\[\boxed{\mathbf{750\ (750).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Предположим,\ что\ Петя\ \]
\[называет\ три\ числа:\ \ a = 100,\ \]
\[b = 10,\ c = 1.\]
\[По\ этим\ числам\ можно\ узнать,\ \]
\[какие\ цифры\ задумал\ Вася,\ \]
\[вот\ таким\ образом:\]
\[Вася\ сообщает\ выражение\ \ \ \]
\[ax + by + cz = 100x + 10y + 1z\ \ \]
\[равное\ какому - либо\ числу.\ \]
\[Мы\ откладываем\ наши\ \]
\[числа\ 100,10\ и\ 1\ и\ узнаем,\ \]
\[какие\ x,\ y,\ z\ задуманы\ Васей.\]
\[Например:\]
\[100x + 10y + 1z = 206,\ \ то\]
\[x = 2,\ \ y = 0,\ \ z = 6.\]
\[\boxed{\mathbf{7}\mathbf{5}\mathbf{0}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x_{1} = 2\]
\[x_{2} = 5\]
\[x_{1} + x_{2} = 2 + 5 = 7,\ \ b = - 7\]
\[x_{1} \cdot x_{2} = 2 \cdot 5 = 10,\ \ c = 10\]
\[Уравнение:\ x² - 7x + 10 = 0\ \]
\[2)\ x_{1} = - \frac{1}{3}\]
\[x_{2} = 2\]
\[x_{1} + x_{2} = 2 - \frac{1}{3} = \frac{5}{3},\ \ \]
\[b = - \frac{5}{3}\]
\[x_{1} \cdot x_{2} = - \frac{2}{3},\ \ c = - \frac{2}{3}\ \]
\[\ x² - \frac{5}{3}x - \frac{2}{3} = 0\ \ \ \ \ \ | \cdot 3\]
\[Уравнение:\ 3x^{2} - 5x - 2 = 0\]
\[3)\ x_{1} = - 0,2\]
\[x_{2} = - 10\]
\[x_{1} + x_{2} = - 10,2\]
\[x_{1} \cdot x_{2} = 2\ \]
\[x² + 10,2x + 2 = 0\ \ \ \ | \cdot 10\]
\[Уравнение:\ \ \]
\[10x² + 102x + 20 = 0\]
\[4)\ x_{1} = 2 - \sqrt{3}\]
\[x_{2} = 2 + \sqrt{3}\]
\[x_{1} + x_{2} = 4\]
\[x_{1} \cdot x_{2} = \ 4 - 3 = 1\]
\[{Уравнение:\ x}^{2} - 4x + 1 = 0\]
\[5)\ x_{1} = 0\]
\[x_{2} = 6\]
\[x_{1} + x_{2} = 6\]
\[x_{1} \cdot x_{2} = \ 0\]
\[Уравнение:\ \ x^{2} - 6x = 0\]
\[6)\ x_{1} = - \sqrt{7}\]
\[x_{2} = \sqrt{7}\]
\[x_{1} + x_{2} = 0\]
\[x_{1} \cdot x_{2} = - 7\ \]
\[Уравнение:\ x² - 7 = 0\]