\[\boxed{\mathbf{739\ (739).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 7x² + 4x - a^{2} - 1 = 0\]
\[x_{1} + x_{2} = - \frac{4}{7} < 0\]
\[x_{1} \cdot x_{2} = \frac{- a^{2} - 1}{7} =\]
\[= - \frac{a^{2} + 1}{7} < 0\]
\[Ответ:верно.\]
\[2)\ x² + 6x + a² + 4 = 0\]
\[x_{1} + x_{2} = - 6 < 0\]
\[x_{1} \cdot x_{2} = a² + 4 > 0\]
\[Ответ:верно.\]
\[\boxed{\mathbf{7}\mathbf{3}\mathbf{9}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x² - 4x - 12 = 0\]
\[D = 16 + 48 = 64\]
\[x = \frac{4 \pm 8}{2}\]
\[x_{1} = 6,\ \ x_{2} = - 2\]
\[6 - 2 = 4 = - b\]
\[6 \cdot ( - 2) = - 12 = c\]
\[Ответ:\ \ x = 6;\ \ x = - 2.\]
\[2)\ x² + 9x + 14 = 0\]
\[D = 81 - 56 = 25\]
\[x = \frac{- 9 \pm 5}{2}\]
\[x_{1} = - 7,\ \ x_{2} = - 2\]
\[- 7 - 2 = - 9 = - b\]
\[- 7 \cdot ( - 2) = 14 = c\]
\[Ответ:\ \ x = - 7;\ \ x = - 2.\]