\[\boxed{\mathbf{689\ (689).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 6x² - 18x + b = 0\]
\[D = 324 - 24b = 0\]
\[24b = 324\]
\[b = 13,5\]
\[Ответ:\ при\ b = 13,5.\]
\[2)\ 8x² + bx + 2 = 0\]
\[D = b^{2} - 64 = 0\]
\[b^{2} = 64\]
\[b = 8,\ \ b = - 8\]
\[Ответ:при\ b = 8\ или\ b = - 8.\]
\[\boxed{\mathbf{6}\mathbf{8}\mathbf{9}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 10\sqrt{3} - 5\sqrt{48} + 2\sqrt{75} =\]
\[= 10\sqrt{3} - 20\sqrt{3} + 10\sqrt{3} = 0\]
\[2)\ \left( 3\sqrt{5} - \sqrt{20} \right) \cdot \sqrt{5} =\]
\[= \left( 3\sqrt{5} - 2\sqrt{5} \right) \cdot \sqrt{5} = \sqrt{5} \cdot \sqrt{5} =\]
\[= 5\]
\[3)\ \left( 5 - \sqrt{2} \right)^{2} = 25 - 10\sqrt{2} + 2 =\]
\[= 27 - 10\sqrt{2}\]
\[4)\ \left( \sqrt{18} - \sqrt{3} \right) \cdot \sqrt{2} + 0,5 \cdot \sqrt{24} =\]
\[= \left( 3\sqrt{2} - \sqrt{3} \right) \cdot \sqrt{2} + 0,5\sqrt{24} =\]
\[= 3 \cdot 2 - \sqrt{6} + \sqrt{6} = 6\]