\[\boxed{\text{67}\text{\ (67)}\text{.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ на\ одной\ паре\]
\[\ противоположных\ сторон\ \]
\[записаны\ числа\ a\ и\ c,\]
\[а\ на\ другой - b\ и\ d.\ Тогда\ сумма\ \]
\[произведений\ равна:\]
\[ab + bc + cd + da = (a + c)(b + d)\]
\[По\ условию,\ сумма\ \]
\[произведений\ равна\ 55.\]
\[Составим\ уравнение:\]
\[(a + c)(b + d) = 55\]
\[55 = 5 \cdot 11\]
\[Тогда\ (a + c) + (b + d) =\]
\[= 5 + 11 = 16.\]
\[Ответ:16.\]
\[\boxed{\text{67.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \frac{7k}{18p} - \frac{4k}{18p} = \frac{7k - 4k}{18p} = \frac{3k}{18p}\]
\[= = \frac{k}{6p}\]
\[2)\ \frac{a - b}{2b} - \frac{a}{2b} = \frac{a - b - a}{2b} =\]
\[= \frac{- b}{2b} = - \frac{1}{2}\]
\[3)\ - \frac{a - 12b}{27a} + \frac{a + 15b}{27a} =\]
\[\text{=}\frac{a + 15b - a + 12b}{27a} = \frac{27b}{27a} = \frac{b}{a}\]
\[4)\ \frac{x - 7y}{\text{xy}} - \frac{x - 4y}{\text{xy}} =\]
\[= \frac{x - 7y - x + 4y}{\text{xy}} = \frac{- 3y}{\text{xy}} = - \frac{3}{x}\]
\[5)\ \frac{10a + 6b}{11a^{3}} - \frac{6b - a}{11a^{3}} =\]
\[= \frac{10a + 6b - 6b + a}{11a^{3}} = \frac{11a}{11a^{3}} =\]
\[= \frac{1}{a^{2}}\]
\[6)\ \frac{x^{2} - xy}{x^{2}y} + \frac{2xy - 3x^{2}}{x^{2}y} =\]
\[= \frac{x^{2} - xy + 2xy - 3x^{2}}{x^{2}y} =\]
\[= \frac{- 2x^{2} + xy}{x^{2}y} =\]
\[= \frac{x(y - 2x)}{x^{2}y} = \frac{y - 2x}{\text{xy}}\]