\[\boxed{\mathbf{663\ (663).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ (2x - 5)(x + 2) = 18\]
\[2x^{2} + 4x - 5x - 10 - 18 = 0\]
\[2x^{2} - x - 28 = 0\]
\[D = 1 + 4 \cdot 2 \cdot 28 = 225\]
\[x = \frac{1 \pm \sqrt{225}}{4} = \frac{1 \pm 15}{4}\]
\[x_{1} = 4,\ \ x_{2} = - \frac{7}{2} = - 3,5\]
\[Ответ:\ x = - 3,5;x = 4.\]
\[16x^{2} - 24x + 9 + 9x^{2} - 1 - 9 =\]
\[= 0\]
\[25x^{2} - 24x - 1 = 0\]
\[D = 576 + 100 = 676\]
\[x = \frac{24 \pm \sqrt{676}}{50} = \frac{24 \pm 26}{50}\]
\[x_{1} = 1,\ \ x_{2} = - 0,04\]
\[Ответ:\ \ x = - 0,04;x = 1.\]
\[3)\ (x + 3)^{2} - (2x - 1)^{2} = 16\]
\[- 3x^{2} + 10x - 8 = 0\]
\[D = 100 - 4 \cdot 3 \cdot 8 = 100 - 96 =\]
\[= 4\]
\[x = \frac{- 10 \pm \sqrt{4}}{- 6} = \frac{- 10 \pm 2}{- 6}\]
\[x_{1} = 2,\ \ x_{2} = \frac{4}{3} = 1\frac{1}{3}\]
\[Ответ:x = 2;\ \ x = 1\frac{1}{3}.\]
\[4)\ (x - 6)^{2} - 2x(x + 3) =\]
\[= 30 - 12x\]
\[- x^{2} - 6x + 6 = 0\]
\[x^{2} + 6x - 6 = 0\]
\[D = 36 + 24 = 60\]
\[x = \frac{- 6 \pm \sqrt{60}}{2} = \frac{- 6 \pm 2\sqrt{15}}{2} =\]
\[= - 3 \pm \sqrt{15}\]
\[Ответ:\ x = - 3 \pm \sqrt{15}.\]
\[- 3x^{2} + 27x - 54 = 0\ \ \ \ |\ :( - 3)\]
\[x^{2} - 9x + 18 = 0\]
\[D = 81 - 4 \cdot 18 = 9\]
\[x = \frac{9 \pm \sqrt{9}}{2} = \frac{9 \pm 3}{2}\]
\[x_{1} = 6,\ \ x_{2} = 3\]
\[Ответ:x = 3;x = 6.\]
\[6)\ (2x - 1)(2x + 1) - x(1 - x) =\]
\[= 2x(x + 1)\]
\[4x^{2} - 1 - x + x^{2} - 2x^{2} - 2x =\]
\[= 0\]
\[3x^{2} - 3x - 1 = 0\]
\[D = 9 + 12 = 21\]
\[x = \frac{3 \pm \sqrt{21}}{6}\]
\[Ответ:\ \ x = \frac{3 \pm \sqrt{21}}{6}.\]