\[\boxed{\mathbf{628\ (628).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ (3x - 1)(x + 4) = - 4\]
\[3x^{2} + 12x - x - 4 + 4 = 0\]
\[3x² + 11x = 0\]
\[x(3x + 11) = 0\]
\[x = 0,\ \ \ \ 3x + 11 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{11}{3} = - 3\frac{2}{3}\]
\[Ответ:\ x = - 3\frac{2}{3};0.\]
\[2)\ (2x - 1)^{2} - 6 \cdot (6 - x) = 2x\]
\[4x^{2} - 4x + 1 - 36 + 6x - 2x =\]
\[= 0\]
\[4x^{2} - 6x + 6x - 35 = 0\]
\[4x^{2} = 35\]
\[x^{2} = \frac{35}{4}\]
\[x = \sqrt{\frac{35}{4}}\]
\[x = - \sqrt{\frac{35}{4}}\]
\[x = \frac{\sqrt{35}}{2}\]
\[x = - \frac{\sqrt{35}}{2}\]
\[Ответ:\ x = - \frac{\sqrt{35}}{2};\frac{\sqrt{35}}{2}.\]
\[x^{2} - x - 6 - x^{2} + 25 - x^{2} + x =\]
\[= 0\]
\[- x^{2} + 19 = 0\]
\[x^{2} = 19\]
\[x = \sqrt{19}\]
\[x = - \sqrt{19}\]
\[Ответ:\ x = - \sqrt{19};\sqrt{19}.\]
\[\boxed{\mathbf{628}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{x} = x\]
\[y = \sqrt{x},\ \ y = x\]
\[x\] | \[1\] | \[4\] | \[9\] |
---|---|---|---|
\[y\] | \[1\] | \[2\] | \[3\] |
\[Ответ:x = 1;x = 0.\]
\[2)\ \sqrt{x} = x²\]
\[y = \sqrt{x},\ \ y = x^{2}\]
\[x\] | \[1\] | \[2\] | \[3\] |
---|---|---|---|
\[y\] | \[1\] | \[4\] | \[9\] |
\[Ответ:x = 1;x = 0.\]
\[3)\ \sqrt{x} = x + 2\]
\[y = \sqrt{x},\ \ y = x + 2\]
\[x\] | \[1\] | \[2\] | \[- 1\] |
---|---|---|---|
\[y\] | \[3\] | \[4\] | \[1\] |
\[Ответ:нет\ корней.\]
\[4)\sqrt{x} = 0,5x + 0,5\]
\[y = \sqrt{x},\ \ y = 0,5x + 0,5\]
\[x\] | \[1\] | \[2\] | \[- 1\] |
---|---|---|---|
\[y\] | \[1\] | \[1,5\] | \[0\] |
\[Ответ:x = 1.\]
\[5)\ \sqrt{x} = \frac{8}{x}\]
\[y = \sqrt{x},\ \ y = \frac{8}{x}\]
\[x\] | \[2\] | \[4\] | \[- 2\] | \[- 4\] |
---|---|---|---|---|
\[y\] | \[4\] | \[2\] | \[- 4\] | \[- 2\] |
\[Ответ:x = 4.\]
\[6)\ \sqrt{x} = 1,5 - 0,5x\]
\[y = \sqrt{x},\ \ y = 1,5 - 0,5x\]
\[x\] | \[1\] | \[2\] |
---|---|---|
\[y\] | \[1\] | \[0,5\] |
\[Ответ:x = 1.\]