\[\boxed{\mathbf{601\ (601).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[f(x) = \left\{ \begin{matrix} \frac{4}{x},\ \ если\ x < 0 \\ \sqrt{x},\ \ если\ x \geq 0 \\ \end{matrix} \right.\ \]
\[1)f( - 8) = - 0,5;\ \ \ \]
\[f(0) = 0;\ \ \ \]
\[f(9) = 3\]
\[2)\ f(x) = \sqrt{x};\ \ \ \ \]
\[x\] | \[1\] | \[4\] | \[9\] | \[0\] |
---|---|---|---|---|
\[f\] | \[1\] | \[2\] | \[3\] | \[0\] |
\[f(x) = \frac{4}{x}\]
\[x\] | \[1\] | \[2\] | \[4\] | \[- 1\] | \[- 2\] | \[- 4\] |
---|---|---|---|---|---|---|
\[f\] | \[4\] | \[2\] | \[1\] | \[- 4\] | \[- 2\] | \[- 1\] |
\[\boxed{\mathbf{60}\mathbf{1}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{4 - 2 - \sqrt{2}} = 2\]
\[\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 - \sqrt{2}} = 2\]
\[\sqrt{2} \cdot \sqrt{\left( 2 + \sqrt{2} \right)\left( 2 - \sqrt{2} \right)} = 2\]
\[\sqrt{2} \cdot \sqrt{2} = 2\]
\[2 = 2.\]