\[\boxed{\text{55\ (55).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{x^{2} - 4}{x + 2} = \frac{(x - 2)(x + 2)}{x + 2} =\]
\[= x - 2 \Rightarrow\]
\[\Rightarrow график\ функции - прямая.\]
\[y = x - 2;\ \ x \neq \ - 2\]
\[x\] | \[2\] | \[3\] | \[4\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[2\] |
\[2)\ y = \frac{x - 3}{3 - x} = \frac{- (3 - x)}{(3 - x)} = - 1 \Rightarrow\]
\[\Rightarrow график\ функции - прямая.\]
\[y = - 1;\ \ x \neq \ 3\]
\[x\] | \[0\] | \[- 1\] | \[- 2\] |
---|---|---|---|
\[y\] | \[- 1\] | \[0\] | \[1\] |
\[4)\ y = \frac{2}{x + 4} - \frac{2}{x + 4};\ \ x \neq - 4\]
\[y = 0 \Rightarrow\]
\[\Rightarrow график\ функции - прямая.\ \]
\[\boxed{\text{55.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{x^{2} - 4}{x + 2} = \frac{(x - 2)(x + 2)}{x + 2} =\]
\[= x - 2 \Rightarrow\]
\[\Rightarrow график\ функции - прямая.\]
\[y = x - 2;\ \ x \neq \ - 2\]
\[x\] | \[2\] | \[3\] | \[4\] |
---|---|---|---|
\[y\] | \[0\] | \[1\] | \[2\] |
\[2)\ y = \frac{x - 3}{3 - x} = \frac{- (3 - x)}{(3 - x)} = - 1 \Rightarrow\]
\[\Rightarrow график\ функции - прямая.\]
\[y = - 1;\ \ x \neq \ 3\]
\[x\] | \[0\] | \[- 1\] | \[- 2\] |
---|---|---|---|
\[y\] | \[- 1\] | \[0\] | \[1\] |
\[4)\ y = \frac{2}{x + 4} - \frac{2}{x + 4};\ \ x \neq - 4\]
\[y = 0 \Rightarrow\]
\[\Rightarrow график\ функции - прямая.\ \]