\[\boxed{\mathbf{543\ (543).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{a}{\sqrt{11}} = \frac{a\sqrt{11}}{11};\]
\[2)\frac{18}{\sqrt{6}} = \frac{18\sqrt{6}}{6} = 3\sqrt{6};\]
\[3)\frac{5}{\sqrt{10}} = \frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2};\]
\[4)\frac{13}{\sqrt{26}} = \frac{13\sqrt{26}}{26} = \frac{\sqrt{26}}{2};\]
\[5)\frac{30}{\sqrt{15}} = \frac{30\sqrt{15}}{15} = 2\sqrt{15};\]
\[6)\frac{2}{3\sqrt{x}} = \frac{2\sqrt{x}}{3x}\text{.\ }\]
\[\boxed{\mathbf{5}\mathbf{4}\mathbf{3}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ y = \sqrt{x^{2}} - 2x,\ \ x \geq 0\]
\[y = |x| - 2x\]
\[y = x - 2x\]
\[y = - x\]
\[2)\ y = \sqrt{- x} \cdot \sqrt{- x}\]
\[y = \sqrt{x^{2}}\]
\[y = |x|\]
\[y = \left\{ \begin{matrix} x,\ \ x \geq 0 \\ - x,\ \ x < 0 \\ \end{matrix} \right.\ \ \]