\[\boxed{\mathbf{512\ (512).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{m^{2}};\ \ если\ m > 0:\ \]
\[\sqrt{m^{2}} = |m| = m;\]
\[2)\ если\ n < 0:\ \ \]
\[\sqrt{n^{2}} = |n| = n;\]
\[3)\ если\ p \geq 0:\ \]
\[\sqrt{16p^{2}} = 4|p| = 4p;\]
\[4)\ если\ k \leq 0:\ \ \]
\[\sqrt{0,36k^{2}} = 0,6|k| = 0,6k;\]
\[5)\ \sqrt{c^{12}} = \left| c^{6} \right|;\]
\[6)\ если\ b \leq 0:\ \ \]
\[\sqrt{0,25b^{14}} = 0,5|b|^{7} = - 0,5b^{7};\]
\[7)\ если\ y \geq 0:\ \ \]
\[\sqrt{81x^{4}y^{2}} = 9x^{2}y;\]
\[8)\ если\ a \leq 0;\ \ b \geq 0:\]
\[\sqrt{0,01a^{6}b^{10}} = 0,1\left| a^{3} \right|\left| b^{5} \right| =\]
\[= - 0,1a^{3}b^{5};\]
\[9)\ если\ x \leq 0:\]
\[- 1,2x\sqrt{64x^{18}} =\]
\[= - 1,2x \cdot 8 \cdot \left| x^{9} \right| = 96x^{10};\]
\[10)\ если\ b < 0:\ \]
\[\frac{\sqrt{a^{12} \cdot b^{22} \cdot c^{36}}}{a^{4} \cdot b^{8} \cdot c^{10}} = \frac{\left| a^{6} \right|\left| b^{11} \right|\left| c^{18} \right|}{a^{4} \cdot b^{8} \cdot c^{10}} =\]
\[= \frac{- a^{6} \cdot b^{11} \cdot c^{18}}{a^{4} \cdot b^{8} \cdot c^{10}} = - a^{2} \cdot b^{3} \cdot c^{8};\]
\[11)\ если\ a < 0:\]
\[\frac{3,3a^{4}}{b^{3}} \cdot \sqrt{\frac{b^{24}}{121a^{26}}} = \frac{3,3a^{4}\left| b^{12} \right|}{b^{3} \cdot 11\left| a^{13} \right|} =\]
\[= \frac{- 0,3b^{9}}{a^{9}} = - \frac{3b^{9}}{10a^{9}};\]
\[12)\ если\ m \leq 0:\]
\[- 0,5m^{5} \cdot \sqrt{1,96m^{6}n^{8}} =\]
\[= - 0,5m^{5} \cdot 1,4\left| m^{3} \right|n^{4} =\]
\[= 0,7m^{8}n^{4}\text{.\ }\]
\[\boxed{\mathbf{51}\mathbf{2}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[a - четное,\ b - нечетное;\]
\[1)\ \frac{8b}{5a} - может\ быть\ \]
\[натуральным\ числом.\]
\[2)\ \frac{a^{2}}{b^{2}} - может\ быть\ \]
\[натуральным\ числом;\ \]
\[3)\ \frac{4a}{b} - может\ быть\ \]
\[натуральным\ числом\]
\[4)\ \frac{b^{2}}{a} - не\ может\ быть\ \]
\[натуральным\ числом.\ \]
\[Ответ:4).\]