\[\boxed{\mathbf{503\ (503).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{\sqrt{48}}{\sqrt{3}} = \sqrt{16} = 4\]
\[2)\ \frac{\sqrt{150}}{\sqrt{6}} = \sqrt{25} = 5\]
\[3)\ \frac{\sqrt{6,3}}{\sqrt{0,7}} = \sqrt{9} = 3\]
\[4)\ \frac{\sqrt{98}}{\sqrt{242}} = \sqrt{\frac{98}{242}} = \sqrt{\frac{49}{121}} = \frac{7}{11}\]
\[5)\ \frac{\sqrt{6} \cdot \sqrt{2}}{\sqrt{3}} = \frac{\sqrt{12}}{\sqrt{3}} = \sqrt{4} = 2\]
\[\boxed{\mathbf{50}\mathbf{3}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{2} = a\]
\[1)\ a = 4:\]
\[x^{2} = 4\]
\[x = 2\ и\ x = - 2.\]
\[2)\ a = 5:\ \]
\[x^{2} = 5\]
\[x = \sqrt{5}\ и\text{\ x} = - \sqrt{5}.\]
\[3)\ a = - 2:\ \ \]
\[x^{2} = - 2\]
\[нет\ корней.\ \ \]