\[\boxed{\text{498\ (498).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \sqrt{9 \cdot 25} = \sqrt{9} \cdot \sqrt{25} =\]
\[= 3 \cdot 5 = 15.\]
\[2)\ \sqrt{16 \cdot 2500} = \sqrt{16} \cdot \sqrt{2500} =\]
\[= 4 \cdot 50 = 200.\]
\[3)\ \sqrt{0,64 \cdot 36} = \sqrt{0,64} \cdot \sqrt{36} =\]
\[= 0,8 \cdot 6 = 4,8.\]
\[4)\ \sqrt{400 \cdot 1,44} =\]
\[= \sqrt{400} \cdot \sqrt{1,44} = 20 \cdot 1,2 = 24.\]
\[5)\ \sqrt{0,09 \cdot 0,04} =\]
\[= \sqrt{0,09} \cdot \sqrt{0,04} =\]
\[= 0,3 \cdot 0,2 = 0,06.\]
\[6)\ \sqrt{6,25 \cdot 0,16} =\]
\[= \sqrt{6,25} \cdot \sqrt{0,16} = 2,5 \cdot 0,4 = 1.\]
\[7)\ \sqrt{6^{2} \cdot 3^{4}} = \sqrt{6^{2}} \cdot \sqrt{3^{4}} =\]
\[= 6 \cdot 3^{2} = 6 \cdot 9 = 54.\]
\[8)\ \sqrt{7^{2} \cdot 2^{8}} = \sqrt{7^{2}} \cdot \sqrt{2^{8}} =\]
\[= 7 \cdot 2^{4} = 7 \cdot 16 = 112.\]
\[9)\ \sqrt{25 \cdot 64 \cdot 0,36} =\]
\[= \sqrt{25} \cdot \sqrt{64} \cdot \sqrt{0,36} =\]
\[= 5 \cdot 8 \cdot 0,6 = 24.\]
\[10)\ \sqrt{0,01 \cdot 0,81 \cdot 2500} =\]
\[= \sqrt{0,01} \cdot \sqrt{0,81} \cdot \sqrt{2500} =\]
\[= 0,1 \cdot 0,9 \cdot 50 = 4,5.\]
\[11)\ \sqrt{\frac{81}{100}} = \frac{\sqrt{81}}{\sqrt{100}} = \frac{9}{10} = 0,9.\]
\[12)\ \sqrt{\frac{49}{256}} = \frac{\sqrt{49}}{\sqrt{256}} = \frac{7}{16}.\]
\[13)\ \sqrt{3\frac{13}{36}} = \sqrt{\frac{121}{36}} = \frac{\sqrt{121}}{\sqrt{36}} =\]
\[= \frac{11}{6} = 1\frac{5}{6}.\]
\[14)\ \sqrt{3\frac{1}{16} \cdot 2\frac{14}{25}} = \sqrt{\frac{49}{16} \cdot \frac{64}{25}} =\]
\[= \frac{\sqrt{49} \cdot \sqrt{64}}{\sqrt{16} \cdot \sqrt{25}} = \frac{7 \cdot 8}{4 \cdot 5} = \frac{7 \cdot 2}{1 \cdot 5} =\]
\[= \frac{14}{5} = 2\frac{4}{5}.\]
\[15)\ \sqrt{\frac{169}{36 \cdot 81}} = \frac{\sqrt{169}}{\sqrt{36} \cdot \sqrt{81}} =\]
\[= \frac{13}{6 \cdot 9} = \frac{13}{54}.\]
\[16)\ \sqrt{\frac{121 \cdot 256}{25 \cdot 100}} = \frac{\sqrt{121} \cdot \sqrt{256}}{\sqrt{25} \cdot \sqrt{100}} =\]
\[= \frac{11 \cdot 16}{5 \cdot 10} = \frac{11 \cdot 8}{5 \cdot 5} = \frac{88}{25} = 3\frac{13}{25}\text{.\ }\]