\[\boxed{\text{387\ (387).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left( \sqrt{7} \right)^{2} = 7\]
\[2)\ \left( \sqrt{4,2} \right)^{2} = 4,2\]
\[3)\ \left( - \sqrt{11} \right)^{2} = 11\]
\[4) - \left( \sqrt{10} \right)^{2} = - 10\]
\[5)\ \left( 2\sqrt{3} \right)^{2} = 4 \cdot 3 = 12\]
\[6)\ \left( \frac{1}{\sqrt{2}} \right)^{2} = \frac{1}{2} = 0,5\]
\[7)\ \left( - \frac{\sqrt{3}}{2} \right)^{2} = \frac{3}{4}\]
\[8)\ \left( \frac{1}{2}\sqrt{14} \right)^{2} = \frac{14}{4} = \frac{7}{2} = 3,5\]
\[9)\ \left( - 0,3 \cdot \sqrt{2} \right)^{2} = 0,09 \cdot 2 = 0,18\]
\[\boxed{\text{3}\text{87}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = \frac{x^{5} + x^{4}}{x^{2} + x} = \frac{x^{4}(x + 1)}{x(x + 1)} =\]
\[= x^{3};\ \ x \neq - 1\]