\[\boxed{\text{368\ (368).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Преобразуем\ левую\ часть\ равенства\ (по\ действиям):\]
\[1)\frac{a^{\backslash a + b}}{a - b} + \frac{a^{2} + b^{2}}{a^{2} - b^{2}} - \frac{a^{\backslash a - b}}{a + b} =\]
\[= \frac{a(a + b) + a^{2} + b^{2} - a(a - b)}{(a - b)(a + b)} =\]
\[= \frac{a^{2} + ab + a^{2} + b^{2} - a^{2} + ab}{(a - b)(a + b)} =\]
\[= \frac{a^{2} + 2ab + b^{2}}{(a - b)(a + b)} =\]
\[= \frac{(a + b)^{2}}{(a - b)(a + b)} = \frac{a + b}{a - b}\]
\[2)\ \frac{(a + b)^{2}}{a - b}\ :\ \frac{a + b}{a - b} =\]
\[= \frac{(a + b)^{2} \cdot (a - b)}{(a - b)(a + b)} = a + b\]
\[a + b = a + b\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{368.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\frac{y - x^{2}}{(x - 1)^{2} + (y - 1)^{2}} = 0\]
\[\left\{ \begin{matrix} y - x^{2} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x - 1)^{2} + (y - 1)^{2} \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} y = x^{2} \\ x \neq 1\ \ \\ y \neq 1\ \ \\ \end{matrix} \right.\ \]
\[2)\ \frac{y - x^{2}}{y - x} = 0\]
\[\left\{ \begin{matrix} y - x^{2} = 0 \\ y - x \neq 0\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = x^{2} \\ y \neq x\ \ \\ \end{matrix} \right.\ \ \]
\[x \neq 0;\ \ \ x \neq 1\ \]