\[\boxed{\text{36}\text{1}\text{\ (361).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = \frac{x^{3} + x^{2}}{x + 1}\]
\[y = \frac{x^{2}(x + 1)}{x + 1} = x^{2}\]
\[y = x^{2};\ \ при\ x \neq - 1\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[2)\ y = \frac{x^{4} - 4x^{2}}{x^{2} - 4}\]
\[y = \frac{x^{2}\left( x^{2} - 4 \right)}{x^{2} - 4} = x^{2}\]
\[y = x^{2};\ \ при\ x \neq 2,;\ x \neq - 2\ \ \]
\[\boxed{\text{361.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) =\]
\[= \left\{ \begin{matrix} 4,\ \ если\ x \leq - 2\ \ \ \ \ \ \ \ \ \ \ \\ x^{2},\ \ если - 2 < x < 1 \\ 2x - 1,\ \ если\ x \geq 1\ \ \ \ \\ \end{matrix} \right.\ \]
\[1)\ f( - 3) = 4\]
\[f( - 2) = 4\]
\[f( - 1) = x^{2} = ( - 1)^{2} = 1\]
\[f(1) = 2x - 1 = 2 \cdot 1 - 1 = 1\]
\[f(3) = 2x - 1 = 2 \cdot 3 - 1 = 5\]
\[f(0,5) = x^{2} = {0,5}^{2} = 0,25\]
\[2)\ f(x) = x^{2}\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[f(x) = 2x - 1\]
\[x\] | \[1\] | \[2\] |
---|---|---|
\[y\] | \[1\] | \[3\] |
\[3)\ При\ 0 < a < 4.\]