\[\boxed{\text{359\ (359).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = \left\{ \begin{matrix} x^{2},\ \ если\ x \leq 0\ \ \ \ \ \\ x + 1,\ \ если\ x > 0 \\ \end{matrix} \right.\ \]
\[1)f( - 7) = x^{2} = ( - 7)^{2} = 49\]
\[f(0) = x^{2} = 0\]
\[f(2) = x + 1 = 2 + 1 = 3\]
\[2)\ f(x) = x^{2}\]
\[x\] | \[1\] | \[2\] | \[- 1\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[1\] | \[4\] | \[1\] | \[4\] |
\[f(x) = x + 1\]
\[x\] | \[1\] | \[0\] |
---|---|---|
\[y\] | \[2\] | \[1\] |
\[\boxed{\text{359.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left\{ \begin{matrix} y = x^{2} \\ y = 2\ \ \\ \end{matrix} \right.\ \]
\[Ответ:2\ решения.\]
\[2)\ \left\{ \begin{matrix} y = x^{2} \\ y = - 2 \\ \end{matrix} \right.\ \]
\[Ответ:нет\ решения.\]
\[3)\ \left\{ \begin{matrix} y - x^{2} = 0\ \ \ \ \ \\ x - y + 6 = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} y = x^{2}\text{\ \ \ \ \ \ } \\ y = x + 6 \\ \end{matrix} \right.\ \ \]
\[y = x + 6\]
\[x\] | \[- 1\] | \[- 2\] |
---|---|---|
\[y\] | \[5\] | \[4\] |
\[Ответ:2\ решения.\]
\[4)\ \left\{ \begin{matrix} y - x^{2} = 0\ \ \\ 2x + 5y = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = x^{2}\text{\ \ \ \ \ \ \ \ \ \ \ } \\ y = \frac{10 - 2x}{5} \\ \end{matrix} \right.\ \]
\[y = \frac{10 - 2x}{5}\]
\[x\] | \[0\] | \[5\] |
---|---|---|
\[y\] | \[2\] | \[0\] |
\[Ответ:2\ решения.\]