\[\boxed{\text{345\ (345).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{3}{5x + 25} + \frac{1}{2x - 10} = \frac{5}{x^{2} - 25}\]
\[\frac{3^{\backslash 2(x - 5)}}{5 \cdot (x + 5)} + \frac{1^{\backslash 5(x + 5)}}{2 \cdot (x - 5)} -\]
\[- \frac{5^{\backslash 10}}{(x - 5)(x + 5)} = 0\]
\[\frac{3 \cdot 2 \cdot (x - 5) + 5 \cdot (x + 5) - 5 \cdot 10}{10 \cdot (x - 5)(x + 5)} = 0\]
\[\frac{6x - 30 + 5x + 25 - 50}{10 \cdot (x - 5)(x + 5)} = 0\]
\[\frac{11x - 55}{10 \cdot (x - 5)(x + 5)} = 0\]
\[\left\{ \begin{matrix} 11x - 55 = 0 \\ x \neq 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x \neq - 5\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = \frac{55}{11}\ \\ x \neq 5\ \ \ \\ x \neq - 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 5\ \ \ \\ x \neq 5\ \ \ \\ x \neq - 5 \\ \end{matrix} \right.\ \]
\[Ответ:нет\ корней.\]