\[\boxed{\text{342\ (342).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)y = \frac{9x - 18}{x^{2} - 2x}\]
\[\frac{9x - 18}{x^{2} - 2x} = \frac{9 \cdot (x - 2)}{x(x - 2)} = \frac{9}{x}\]
\[y = \frac{9}{x};\ \ при\ x \neq 2\]
\[x\] | \[2\] | \[4,5\] | \[3\] | \[- 2\] | \[- 4,5\] | \[- 3\] |
---|---|---|---|---|---|---|
\[y\] | \[4,5\] | \[2\] | \[3\] | \[- 4,5\] | \[- 2\] | \[- 3\] |
\[2)\ y = \frac{5x^{2} - 5}{x - x^{3}}\]
\[\frac{5x^{2} - 5}{x - x^{3}} = \frac{5\left( x^{2} - 1 \right)}{x\left( 1 - x^{2} \right)} = - \frac{5}{x}\]
\[y = - \frac{5}{x};\ \ при\ x \neq 1;\ \ x \neq - 1\]
\[x\] | \[1\] | \[2\] | \[5\] | \[- 1\] | \[- 2\] | \[- 5\] |
---|---|---|---|---|---|---|
\[y\] | \[- 5\] | \[- 2,5\] | \[- 1\] | \[5\] | \[2,5\] | \[1\] |
\[\boxed{\text{342.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\left\{ \begin{matrix} xy = 5\ \ \ \ \\ y - x = 4 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = \frac{5}{x}\text{\ \ \ \ \ \ } \\ y = 4 + x \\ \end{matrix} \right.\ \]
\[y = \frac{5}{x}\]
\[x\] | \[1\] | \[5\] | \[2,5\] | \[- 1\] | \[- 5\] | \[- 2,5\] |
---|---|---|---|---|---|---|
\[y\] | \[5\] | \[1\] | \[2\] | \[- 5\] | \[- 1\] | \[- 2\] |
\[y = 4 + x\]
\[x\] | \[1\] | \[0\] |
---|---|---|
\[y\] | \[5\] | \[4\] |
\[Ответ:( - 5; - 1);(1;5).\]