\[\boxed{\text{337\ (337).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[так\ как\ x = y:\]
\[x = \frac{64}{x}\]
\[x^{\backslash x} - \frac{64}{x} = 0\]
\[\frac{x^{2} - 64}{x} = 0\]
\[\left\{ \begin{matrix} x^{2} - 64 = 0 \\ x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 8\ \ \ \\ x = - 8 \\ x \neq 0\ \ \ \\ \end{matrix} \right.\ \]
\[\text{A\ }(8;8);\ \ B\ ( - 8;\ - 8)\]
\[Ответ:\ A\ (8;8);\ \ B\ ( - 8;\ - 8).\]
\[\boxed{\text{337.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = \frac{k}{x}\]
\[\text{A\ }(10;1,6):\ \]
\[1,6 = \frac{k}{10}\text{\ \ }\]
\[k = 1,6 \cdot 10 = 16\]
\[1)\ \text{B\ }( - 1;\ - 16):\ \ \]
\[- 16 = \frac{16}{- 1}\]
\[- 16 = - 16 \Longrightarrow проходит.\]
\[2)\ \text{C\ }( - 2;8):\ \ \]
\[8 = \frac{16}{- 2}\ \]
\[8 \neq - 8 \Longrightarrow \ не\ проходит.\]