\[\boxed{\text{238\ (238).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 0,1 = \left( \frac{1}{10} \right)^{1} = 10^{- 1}\text{\ \ }\]
\[2)\ 0,01 = \left( \frac{1}{10} \right)^{2} = 10^{- 2}\]
\[3)\ 0,0001 = \left( \frac{1}{10} \right)^{4} = 10^{- 4}\]
\[4)\ 0,000001 = \left( \frac{1}{10} \right)^{6} = 10^{- 6}\]
\[\boxed{\text{238.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 1 = 3^{0},\ 3 = 3^{1},\ 9 = 3^{2},\ \]
\[27 = 3^{3},\ 81 = 3^{4},\ \]
\[\frac{1}{3} = 3^{- 1},\frac{1}{9} = 3^{- 2},\frac{1}{27} = 3^{- 3},\]
\[\frac{1}{81} = 3^{- 4}\]
\[2)\ 1 = \left( \frac{1}{3} \right)^{0},\ 3 = \left( \frac{1}{3} \right)^{- 1},\ \]
\[9 = \left( \frac{1}{3} \right)^{- 2},\ 27 = \left( \frac{1}{3} \right)^{- 3},\ \]
\[81 = \left( \frac{1}{3} \right)^{- 4},\]
\[\frac{1}{3} = \left( \frac{1}{3} \right)^{1},\frac{1}{9} = \left( \frac{1}{3} \right)^{2},\frac{1}{27} =\]
\[= \left( \frac{1}{3} \right)^{3},\frac{1}{81} = \left( \frac{1}{3} \right)^{4}\]