\[\boxed{\text{186\ (186).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\frac{a^{\backslash a + 1} - \frac{a^{2}}{a + 1}}{a^{\backslash a + 1} - \frac{a}{a + 1}} =\]
\[= \frac{\frac{a(a + 1) - a^{2}}{a + 1}}{\frac{a(a + 1) - a}{a + 1}} =\]
\[= \frac{\frac{a^{2} + a - a^{2}}{a + 1}}{\frac{a^{2} + a - a}{a + 1}} =\]
\[= \frac{a}{a + 1}\ :\frac{a^{2}}{a + 1} =\]
=\(\frac{a(a + 1)}{(a + 1) \cdot a^{2}} = \frac{1}{a}\)
\[2)\ \frac{a^{\backslash a} - \frac{6a - 9}{a}}{1^{\backslash a} - \frac{3}{a}} = \frac{\frac{a^{2} - 6a + 9}{a}}{\frac{a - 3}{a}} =\]
\[= \frac{(a - 3)^{2}}{a}\ :\frac{a - 3}{a} =\]
\[= \frac{(a - 3)^{2} \cdot a}{a(a - 3)} =\]
\[a - 3\]
\[3)\ \frac{1}{1 - \frac{1}{1^{\backslash a} + \frac{1}{a}}} =\]
\[= 1\ :\left( 1 - \frac{1}{\frac{a + 1}{a}} \right) =\]
\[= 1\ :\left( 1^{\backslash a + 1} - \frac{a}{a + 1} \right) =\]
\[= 1\ :\frac{a + 1 - a}{a + 1} =\]
\[= 1\ :\frac{1}{a + 1} = a + 1\]
\[4)\ \frac{\frac{2a - b}{b} + 1^{\backslash b}}{\frac{2a + b}{b} - 1^{\backslash b}} + \frac{3^{\backslash a} - \frac{b}{a}}{\frac{3a}{b} - 1^{\backslash b}} =\]
\[= \frac{\frac{2a - b + b}{b}}{\frac{2a + b - b}{b}} + \frac{\frac{3a - b}{a}}{\frac{3a - b}{b}} =\]
\[= \frac{2a}{b}\ :\frac{2a}{b} + \frac{3a - b}{a}\ :\frac{3a - b}{b} =\]
\[= 1 + \frac{3a - b}{a} \cdot \frac{b}{3a - b} =\]
\[= 1^{\backslash a} + \frac{b}{a} = \frac{a + b}{a}\]
\[\boxed{\text{186.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\left( \frac{a^{2}}{b^{3} - ab^{2}} + \frac{a - b}{b^{2}} - \frac{1}{b} \right)\ :\]
\[:\left( \frac{a + b}{b - a} - \frac{b - a}{a + b} + \frac{6a^{2}}{a^{2} - b^{2}} \right) =\]
\[= \left( \frac{a^{2}}{b^{2}(b - a)} + \frac{a - b^{\backslash b - a}}{b^{2}} - \frac{1^{\backslash b(b - a)}}{b} \right)\ :\]
\[:\left( \ \frac{a + b^{\backslash b + a}}{b - a} - \frac{b - a^{\backslash b - a}}{a + b} - \frac{6a^{2}}{b^{2} - a^{2}} \right) =\]
\[= \frac{a^{2} + ab + ab - a^{2} - b^{2} - b^{2} + ab}{b^{2}(b - a)}\ :\]
\[:\frac{- a^{2} - b^{2} - 2ab + a^{2} + b^{2} - 2ab + 6a^{2}}{(a - b)(a + b)} =\]
\[= \frac{3ab - 2b^{2}}{b^{2}(b - a)}\ :\frac{6a^{2} - 4ab}{(a - b)(a + b)} =\]
\[= \frac{- b(3a - 2b)(a - b)(a + b)}{b^{2}(b - a) \cdot 2a(3a - 2b)} =\]
\[= \frac{- a - b}{2ab}\ \]
\[1)\frac{(2 - a)\left( 4a^{2} + 2a + 1 \right)}{(1 - 2a)\left( 4a^{2} + 2a + 1 \right) \cdot a(2a + 1)} =\]
\[= \frac{2 - a}{a(1 - 2a)(2a + 1)}\]
\[2)\frac{a + 2}{a\left( 4a^{2} - 4a + 1 \right)} -\]
\[- \frac{2 - a}{a(1 - 2a)(2a + 1)} =\]
\[= \frac{a + 2^{\backslash 2a + 1}}{a(2a - 1)^{2}} +\]
\[+ \frac{2 - a^{\backslash 2a - 1}}{a(2a - 1)(2a + 1)} =\]
\[= \frac{2a^{2} + a + 4a + 2 + 4a - 2 - 2a^{2} + a}{a(2a - 1)^{2}(2a + 1)} =\]
\[= \frac{10a}{a(2a - 1)^{2}(2a + 1)} =\]
\[= \frac{10}{(2a - 1)^{2}(2a + 1)}\]
\[3)\ \frac{10}{(2a - 1)^{2}(2a + 1)}\ :\]
\[:\frac{1}{(1 - 2a)^{2}} = \frac{10(1 - 2a)^{2}}{(2a - 1)^{2}(2a + 1)} =\]
\[= \frac{10}{2a + 1}\]
\[4)\ \frac{10^{\backslash a}}{2a + 1} - \frac{8a - 1}{a(2a + 1)} =\]
\[= \frac{10a - 8a + 1}{a(2a + 1)} =\]
\[= \frac{(2a + 1)}{a(2a + 1)} = \frac{1}{a}\]