\[\boxed{\text{177\ (177).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\left( x^{\backslash y} + \frac{x}{y} \right)\ :\left( x^{\backslash y} - \frac{x}{y} \right) =\]
\[= \frac{\text{xy} + x}{y}\ :\frac{\text{xy} - x}{y} =\]
\[= \frac{x(y + 1) \cdot y}{y \cdot x(y - 1)} = \frac{y + 1}{y - 1}\]
\[2)\ \left( \frac{a^{\backslash a - b}}{b} + \frac{a + b^{\backslash b}}{a - b} \right) \cdot \frac{ab^{2}}{a^{2} + b^{2}} =\]
\[= \frac{a^{2} - ab + ab + b^{2}}{b(a - b)} \cdot\]
\[\cdot \frac{ab^{2}}{\left( a^{2} + b^{2} \right)} =\]
\[= \frac{\left( a^{2} + b^{2} \right)ab^{2}}{b(a - b)\left( a^{2} + b^{2} \right)} = \frac{\text{ab}}{a - b}\]
\[3)\ \left( \frac{m}{m - 1} - 1^{\backslash m - 1} \right)\ :\frac{m}{mn - n} =\]
\[= \frac{m - m + 1}{m - 1}\ :\frac{m}{n(m - 1)} =\]
\[= \frac{n(m - 1)}{m(m - 1)} = \frac{n}{m}\]
\[4)\ \left( \frac{a^{\backslash a}}{b} - \frac{b^{\backslash b}}{a} \right) \cdot \frac{4ab}{a - b} =\]
\[= \frac{a^{2} - b^{2}}{\text{ab}} \cdot \frac{4ab}{a - b} =\]
\[= \frac{(a - b) \cdot (a + b) \cdot 4ab}{\text{ab}(a - b)} =\]
\[= 4 \cdot (a + b)\]
\[5)\frac{a}{b} - \frac{a^{2} - b^{2}}{b^{2}}\ :\frac{a + b}{b} =\]
\[= \frac{a}{b} - \frac{(a - b)(a + b) \cdot b}{b^{2}(a + b)} =\]
\[= \frac{a}{b} - \frac{a - b}{b} = \frac{a - a + b}{b} = 1\]
\[6)\ \frac{7x}{x + 2} - \frac{x - 8}{3x + 6} \cdot \frac{84}{x^{2} - 8x} =\]
\[= \frac{7x}{x + 2} - \frac{(x - 8) \cdot 84}{3(x + 2) \cdot x \cdot (x - 8)} =\]
\[= \frac{7x^{\backslash x}}{x + 2} - \frac{28}{x(x + 2)} = \frac{7x^{2} - 28}{x(x + 2)} =\]
\[= \frac{7 \cdot (x - 2)(x + 2)}{x(x + 2)} = \frac{7 \cdot (x - 2)}{x}\]
\[7)\ \left( a^{\backslash a + 3} - \frac{9a - 9}{a + 3} \right)\ :\ \frac{a^{2} - 3a}{a + 3} =\]
\[= \frac{a^{2} + 3a - 9a + 9}{a + 3}\ :\frac{a(a - 3)}{a + 3} =\]
\[= \frac{(a - 3)^{2}(a + 3)}{(a + 3) \cdot a \cdot (a - 3)} = \frac{a - 3}{a}\]
\[8)\ \left( \frac{a^{\backslash a + 8}}{a + 2} - \frac{8^{\backslash a + 2}}{a + 8} \right) \cdot \frac{a^{2} + 8a}{a - 4} =\]
\[= \frac{a^{2} + 8a - 8a - 16}{(a + 2)(a + 8)} \cdot\]
\[\cdot \frac{a(a + 8)}{a - 4} =\]
\[= \frac{(a - 4)(a + 4) \cdot a \cdot (a + 8)}{(a + 2)(a + 8)(a - 4)} =\]
\[= \frac{a(a + 4)}{a + 2}\ \]