\[\boxed{\text{160\ (160).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\frac{a^{2} - 81}{a^{2} - 8a}\ :\frac{a - 9}{a^{2} - 64} =\]
\[= \frac{(a - 9)(a + 9)(a - 8)(a + 8)}{a(a - 8)(a - 9)} =\]
\[= \frac{(a + 9)(a + 8)}{a}\]
\[если\ a = - 4:\ \]
\[\frac{( - 4 + 9)( - 4 + 8)}{- 4} = \frac{5 \cdot 4}{- 4} = - 5.\]
\[2)\ \frac{x}{4x^{2} - 4y^{2}}\ :\frac{1}{6x + 6y} =\]
\[= \frac{x \cdot 6 \cdot (x + y)}{4(x + y)(x - y)} = \frac{3x}{2(x - y)}\]
\[если\ x = 4,2;\ \ y = - 2,8:\ \]
\[\frac{3 \cdot 4,2}{2(4,2 + 2,8)} = \frac{12,6}{14} = 0,9.\ \]
\[3)\ \left( 3a^{2} - 18a + 27 \right)\ :\frac{3a - 9}{4a} =\]
\[= \frac{3(a - 3)^{2} \cdot 4a}{3(a - 3)} = 4a(a - 3)\]
\[если\ a = 0,5:\ \]
\[4 \cdot 0,5 \cdot (0,5 - 3) = 2 \cdot ( - 2,5) =\]
\[= - 5.\]
\[4)\ \frac{a^{6} + a^{5}}{(3a - 3)^{2}}\ :\frac{a^{5} + a^{4}}{9a^{2} - 9a} =\]
\[= \frac{\left( a^{6} + a^{5} \right) \cdot 9a \cdot (a - 1)}{3 \cdot (a - 1)^{2} \cdot \left( a^{5} + a^{4} \right)} =\]
\[= \frac{\left( a^{6} + a^{5} \right) \cdot a}{(a - 1)\left( a^{5} + a^{4} \right)}\]
\[при\ a = 0,8:\]
\[\frac{{((0,8)}^{6} + (0,8)^{5}) \cdot 0,8}{(0,8 - 1){((0,8)}^{5} + (0,8)^{4})} =\]
\[= \frac{(0,8)^{7} + (0,8)^{6}}{- 0,2{((0,8)}^{5} + (0,8)^{4})} =\]
\[= \frac{(0,8)^{6}(0,8 + 1)}{- 0,2(0,8)^{4}(0,8 + 1)} =\]
\[= \frac{(0,8)^{2}}{- 0,2} = - 3,2.\]
\[\boxed{\text{160.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x - \frac{1}{x} = 9;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[x^{2} + \frac{1}{x^{2}} = ?\]
\[Возведем\ обе\ части\ равенства\ \]
\[в\ квадрат:\]
\[\left( x - \frac{1}{x} \right)^{2} = 9^{2}\]
\[x^{2} - 2 + \frac{1}{x^{2}} = 81\]
\[x^{2} + \frac{1}{x^{2}} = 81 + 2\]
\[x^{2} + \frac{1}{x^{2}} = 83\]
\[Ответ:83.\]