\[\boxed{\text{126\ (126).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\frac{1}{(a - b) \cdot (a - c)} -\]
\[- \frac{1}{(a - b) \cdot (b - c)} +\]
\[+ \frac{1}{(c - a) \cdot (c - b)} = 0\]
\[Упростим\ левую\ часть\ \]
\[равенства:\]
\[\frac{1^{\backslash b - c}}{(a - b) \cdot (a - c)} -\]
\[- \frac{1^{\backslash a - c}}{(a - b) \cdot (b - c)} +\]
\[+ \frac{1^{\backslash a - b}}{(a - c) \cdot (b - c)} = 0\]
\[\frac{(b - c) - (a - c) + (a - b)}{(a - b) \cdot (a - c) \cdot (b - c)} = 0\]
\[\frac{b - c - a + c + a - b}{(a - b) \cdot (a - c) \cdot (b - c)} = 0\]
\[\frac{0}{(a - b) \cdot (a - c) \cdot (b - c)} = 0\]
\[0 = 0.\ \]