\[\boxed{\text{Задание}\text{\ 4.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\boxed{\mathbf{1.}}\]
\[Ответ:В).\]
\[\boxed{\mathbf{2.}}\]
\[\sqrt{4} = 2;\ \ \sqrt{0,04} = 0,2;\ \ \]
\[\sqrt{400} = 20\]
\[Ответ:Б).\]
\[\boxed{\mathbf{3.}}\]
\[Ответ:Б).\]
\[\boxed{\mathbf{4.}}\]
\[Ответ:В).\]
\[\boxed{\mathbf{5.}}\]
\[Ответ:В).\]
\[\boxed{\mathbf{6.}}\]
\[\sqrt{7x - 3}\]
\[при\ x = 4:\]
\[\sqrt{7 \cdot 4 - 3} - \sqrt{28 - 3} = \sqrt{25} = 5\]
\[Ответ:А).\]
\[\boxed{\mathbf{7.}}\]
\[\sqrt{36 \cdot 0,81} = 6 \cdot 0,9 = 5,4\]
\[Ответ:В).\]
\[\boxed{\mathbf{8.}}\]
\[\left( \frac{1}{5}\sqrt{10} \right)^{2} = \frac{1}{25} \cdot 10 = \frac{2}{5} = 0,4\]
\[Ответ:Г).\]
\[\boxed{\mathbf{9.}}\]
\[\sqrt{9a} - \sqrt{16a} + \sqrt{64a} =\]
\[= 3\sqrt{a} - 4\sqrt{a} + 8\sqrt{a} = 7\sqrt{a}\]
\[Ответ:В).\]
\[\boxed{\mathbf{10.}}\]
\[\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}\]
\[Ответ:В).\]
\[\boxed{\mathbf{11.}}\]
\[\frac{a - 2}{a - 2\sqrt{2a} + 2} = \frac{a - 2}{\left( \sqrt{a} - \sqrt{2} \right)^{2}} =\]
\[= \frac{\left( \sqrt{a} - \sqrt{2} \right)\left( \sqrt{a} + \sqrt{2} \right)}{\left( \sqrt{a} - \sqrt{2} \right)^{2}} =\]
\[= \frac{\sqrt{a} + \sqrt{2}}{\sqrt{a} - \sqrt{2}}\]
\[Ответ:А).\]
\[\boxed{\mathbf{12.}}\]
\[Ответ:Б).\]
\[\boxed{\text{Задание}\text{\ 4.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\boxed{\mathbf{1.}}\]
\[Ответ:В).\]
\[\boxed{\mathbf{2.}}\]
\[\sqrt{4} = 2;\ \ \sqrt{0,04} = 0,2;\ \ \]
\[\sqrt{400} = 20\]
\[Ответ:Б).\]
\[\boxed{\mathbf{3.}}\]
\[Ответ:Б)\ \lbrack - 1;4\rbrack.\]
\[\boxed{\mathbf{4.}}\]
\[Ответ:В).\]
\[\boxed{\mathbf{5.}}\]
\[Ответ:В).\]
\[\boxed{\mathbf{6.}}\]
\[\sqrt{7x - 3}\]
\[при\ x = 4:\]
\[\sqrt{7 \cdot 4 - 3} - \sqrt{28 - 3} = \sqrt{25} = 5\]
\[Ответ:А).\]
\[\boxed{\mathbf{7.}}\]
\[\sqrt{36 \cdot 0,81} = 6 \cdot 0,9 = 5,4\]
\[Ответ:В).\]
\[\boxed{\mathbf{8.}}\]
\[\left( \frac{1}{5}\sqrt{10} \right)^{2} = \frac{1}{25} \cdot 10 = \frac{2}{5} = 0,4\]
\[Ответ:Г).\]
\[\boxed{\mathbf{9.}}\]
\[\sqrt{9a} - \sqrt{16a} + \sqrt{64a} =\]
\[= 3\sqrt{a} - 4\sqrt{a} + 8\sqrt{a} = 7\sqrt{a}\]
\[Ответ:В).\]
\[\boxed{\mathbf{10.}}\]
\[\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}\]
\[Ответ:В).\]
\[\boxed{\mathbf{11.}}\]
\[\frac{a - 2}{a - 2\sqrt{2a} + 2} = \frac{a - 2}{\left( \sqrt{a} - \sqrt{2} \right)^{2}} =\]
\[= \frac{\left( \sqrt{a} - \sqrt{2} \right)\left( \sqrt{a} + \sqrt{2} \right)}{\left( \sqrt{a} - \sqrt{2} \right)^{2}} =\]
\[= \frac{\sqrt{a} + \sqrt{2}}{\sqrt{a} - \sqrt{2}}\]
\[Ответ:А).\]
\[\boxed{\mathbf{12.}}\]
\[Ответ:Б).\]