\[\boxed{\text{78\ (78).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\boxed{\text{78.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[= \frac{1 - x + x}{x^{3}} = \frac{1}{x^{3}}\]
\[\textbf{в)}\ \frac{1^{{\backslash a}^{3}}}{2a^{7}} + \frac{4 - 2{a^{3}}^{\backslash 2}}{a^{10}} =\]
\[= \frac{a^{3} + 8 - 4a^{3}}{2a^{10}} = \frac{8 - 3a^{3}}{2a^{10}}\]
\[\textbf{г)}\ \frac{a + b^{\backslash b}}{a^{2}} + \frac{a - b^{\backslash a}}{\text{ab}} =\]
\[= \frac{ab + b^{2} + a^{2} - ab}{a^{2}b} = \frac{a^{2} + b^{2}}{a^{2}b}\]
\[\textbf{д)}\ \frac{2a - 3b^{\backslash b}}{a^{2}b} + \frac{4a - 5b^{\backslash a}}{ab^{2}} =\]
\[= \frac{2ab - 3b^{2} + 4a^{2} - 5ab}{a^{2}b^{2}} =\]
\[= \frac{4a^{2} - 3b^{2} - 3ab}{a^{2}b^{2}}\]
\[\textbf{е)}\ \frac{x - 2y^{\backslash x}}{xy^{2}} - \frac{2y - x^{\backslash y}}{x^{2}y} =\]
\[= \frac{x^{2} - 2yx - 2y^{2} + xy}{x^{2}y^{2}} =\]
\[= \frac{x^{2} - xy - 2y^{2}}{x^{2}y^{2}}\]