Решебник по алгебре 8 класс Макарычев ФГОС Задание 748

Авторы:
Год:2021
Тип:учебник

Задание 748

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{748\ (748).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Знаки сравнения:

\(\mathbf{<} -\) меньше.

\[\mathbf{a < b}\]

1. При увеличении большего числа неравенство не изменится.

2. При уменьшении меньшего числа неравенство не изменится.

3. При увеличении большего и уменьшении меньшего числа неравенство не изменится.

Решение.

\[a < b\]

\[a < b + 1\]

\[a - 3 < b\]

\[a - 5 < b + 2\]

\[a + 4\ и\ b - 1 \Longrightarrow невозможно\ \]

\[сравнить.\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{748.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[\textbf{а)}\ (5x + 3)^{2} = 5 \cdot (x + 3)\]

\[25x^{2} + 30x + 9 = 5x + 15\]

\[25x^{2} + 25x - 6 = 0\]

\[D = 625 + 600 = 1225\]

\[x_{1,2} = \frac{- 25 \pm 35}{50} = \frac{1}{5};\ - \frac{6}{5}\]

\[Ответ:при\ x = \left\{ - 1,2;0,2 \right\}.\]

\[\textbf{б)}\ (3x + 10)^{2} = 3 \cdot (x + 10)\]

\[9x^{2} + 60x + 100 = 3x + 30\]

\[9x^{2} + 57x + 70 = 0\]

\[D = 3249 - 2520 = 729 = 27^{2}\]

\[x_{1,2} = \frac{- 57 \pm 27}{18} = - \frac{30}{18};\ - \frac{84}{18}\]

\[x_{1} = - \frac{5}{3};\ \ x_{2} = - \frac{14}{3}\]

\[Ответ:x = \left\{ - 1\frac{2}{3};\ - 4\frac{2}{3} \right\}.\]

\[\textbf{в)}\ (3x - 8)^{2} = 3x^{2} - 8x\]

\[(3x - 8)^{2} - x \cdot (3x - 8) = 0\]

\[(3x - 8)(3x - 8 - x) = 0\]

\[3x - 8 = 0\ \ \ \ \ \ \ 2x - 8 = 0\]

\[\ \ \ \ \ \ \ \ \ 3x = 8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2x = 8\]

\[\ \ \ \ \ \ \ \ \ \ \ x = \frac{8}{3}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 4\]

\[Ответ:x = \left\{ 2\frac{2}{3};4 \right\}.\]

\[\textbf{г)}\ (4x + 5)^{2} = 5x^{2} + 4x\]

\[16x^{2} + 40x + 25 = 5x^{2} + 4x\]

\[11x^{2} + 36x + 25 = 0\]

\[D = 1296 - 1100 = 196 = 14^{2}\]

\[x_{1,2} = \frac{- 36 \pm 14}{22} = - 1;\ - \frac{25}{11}\]

\[Ответ:x = \left\{ - 2\frac{3}{11}; - 1 \right\}.\]

\[\textbf{д)}\ (5x + 3)^{2} = 5x + 3\]

\[(5x + 3)^{2} - (5x + 3) = 0\]

\[(5x + 3)(5x + 3 - 1) = 0\]

\[(5x + 3)(5x + 2) = 0\]

\[5x + 3 = 0\ \ \ \ \ \ \ \ 5x + 2 = 0\]

\[\ \ \ \ \ \ \ \ 5x = - 3\ \ \ \ \ \ \ \ \ \ \ \ \ 5x = - 2\]

\[\ \ \ \ \ \ \ \ \ \ x = - \frac{3}{5}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{2}{5}\]

\[Ответ:x = \left\{ - 0,4;\ - 0,6 \right\}.\]

\[\textbf{е)}\ (5x + 3)^{2} = (3x + 5)^{2}\]

\[25x^{2} + 30x + 9 = 9x^{2} + 30x + 25\]

\[16x^{2} = 16\]

\[x^{2} = 1\]

\[x = \pm 1\]

\[Ответ:x = \left\{ - 1;1 \right\}.\]

\[\textbf{ж)}\ (4x + 5)^{2} = 4 \cdot (x + 5)^{2}\]

\[16x^{2} + 40x + 25 = 4x^{2} + 40x + 100\]

\[12x^{2} = 75\]

\[x^{2} = \frac{75}{12} = \frac{25}{4}\]

\[x = \pm \frac{5}{2} = \pm 2,5\]

\[Ответ:x = \left\{ - 2,5;2,5 \right\}.\]

\[\textbf{з)}\ (2x + 10)^{2} = 4 \cdot (x + 5)^{2}\]

\[4x^{2} + 40x + 100 = 4x^{2} + 40x + 100\]

\[0 = 0\]

\[Ответ:x - любое\ число.\ \]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам