Решебник по алгебре 8 класс Макарычев ФГОС Задание 711

Авторы:
Год:2021
Тип:учебник

Задание 711

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{711\ (711).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Чтобы найти время, нужно путь разделить на скорость:

\[\mathbf{t =}\frac{\mathbf{s}}{\mathbf{v}}\mathbf{.}\]

Решить уравнение – это значит найти все значения неизвестных, при которых оно обращается в верное числовое равенство, или доказать, что таких значений нет.

Уравнения вида \(\mathbf{a}\mathbf{x}^{\mathbf{2}}\mathbf{+ bx + c = 0}\), где a, b и c – любые числа и a ≠ 0, называется квадратным уравнением.

Дискриминант – это формула, благодаря которой можно найти корни заданного квадратного уравнения:

\[\mathbf{D =}\mathbf{b}^{\mathbf{2}}\mathbf{- 4}\mathbf{\text{ac.}}\]

Формулы корней уравнения:

\[\mathbf{x}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{- b +}\sqrt{\mathbf{D}}}{\mathbf{2}\mathbf{a}}\mathbf{.}\]

\[\mathbf{x}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{- b -}\sqrt{\mathbf{D}}}{\mathbf{2}\mathbf{a}}\mathbf{.}\]

При решении уравнений используем следующее:

1. Чтобы сложить (вычесть) дроби с разными знаменателями, надо привести их к наименьшему общему знаменателю, затем сложить (вычесть) числители дробей, а знаменатель оставить без изменений.

2. Чтобы привести дроби к наименьшему общему знаменателю используем правило:

1. Найти наименьший общий знаменатель, который делится на каждый из знаменателей без остатка.

2. Найти дополнительный множитель, для каждого числителя, разделив общий знаменатель на знаменатели данных дробей.

3. Умножить числитель каждой дроби на дополнительный множитель.

3. Распределительное свойство умножения – число, стоящее перед скобкой, нужно умножить на каждое число в скобке:

\[\mathbf{a}\left( \mathbf{b - c} \right)\mathbf{= ab - ac.}\]

4. Формулу умножения многочлена на многочлен – каждое число из первой скобки умножить на каждое число из второй:

\[\left( \mathbf{a + b} \right)\left( \mathbf{c + d} \right)\mathbf{= ac + ad + bc + bd.}\]

5. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.

Решение.

\[Пусть\ \text{x\ }\frac{км}{ч} - скорость\ \]

\[одного\ автомобиля,\]

\[\ (x + 10)\ \frac{км}{ч} - скорость\]

\[другого\ автомобиля.\ \]

\[\frac{10x + 50 - 150}{x} =\]

\[= \frac{(10x - 100)}{x}\ ч - был\ в\ пути\ \]

\[первый\ автомобиль;\]

\[\frac{150}{x + 10}\ \ ч - был\ в\ пути\ второй\ \]

\[автомобиль.\]

\[5x + 5 \cdot (x + 10) =\]

\[= 5x + 5x + 50 =\]

\[= 10x + 50\ км - расстояние\ \]

\[между\ городами.\]

\[Составим\ уравнение:\ \]

\[\frac{10x - 100}{x} - \frac{150}{x + 10} = 4\frac{1}{2}\]

\[20x^{2} - 2000 - 300x =\]

\[= 9x^{2} + 90x\]

\[11x^{2} - 390x - 2000 = 0\]

\[D = 152\ 100 + 88\ 000 =\]

\[= 240\ 100 = 490²\]

\[x_{1,2} = \frac{390 \pm 490}{22}\]

\[x_{2} = 40\ \frac{(км}{ч}) - скорость\ \]

\[одного\ автомобиля.\]

\[10x + 50 = 10 \cdot 40 + 50 =\]

\[= 450\ (км) - расстояние\ \]

\[между\ городами.\]

\[Ответ:450\ км.\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{711.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[\textbf{а)}\ \left\{ \begin{matrix} x - y = 5 \\ \frac{1}{x} + \frac{1}{y} = \frac{1}{6} \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} x = y + 5\ \ \ \ \ \ \ \ \\ \frac{1}{y + 5} + \frac{1}{y} = \frac{1}{6} \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} x = y + 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{6y + 6 \cdot (y + 5) - y(y + 5)}{6y(y + 5)} = 0 \\ \end{matrix} \right.\ \]

\[6y + 6y + 30 - y^{2} - 5y = 0\]

\[y^{2} - 7y - 30 = 0\]

\[D = 7^{2} + 4 \cdot 30 = 169\]

\[y_{1} = \frac{7 + 13}{2} = 10;\]

\[y_{2} = \frac{7 - 13}{2} = - 3.\]

\[1)\ y_{1} = 10;\ \ \ \ \ x_{1} = 15;\]

\[2)\ y_{2} = - 3;\ \ \ \ x_{2} = 2.\ \ \]

\[Ответ:(2; - 3);(15;10).\]

\[\textbf{б)}\ \left\{ \begin{matrix} x + y = 6 \\ \frac{1}{x} - \frac{1}{y} = \frac{1}{4} \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 6 - x\ \ \ \ \ \\ \frac{1}{x} - \frac{1}{6 - x} = \frac{1}{4} \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 6 - x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{4 \cdot (6 - x) - 4x - x(6 - x)}{4x(6 - x)} = 0 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 6 - x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{24 - 4x - 4x - 6x + x²}{4x(6 - x)} = 0 \\ \end{matrix} \right.\ \]

\[x^{2} - 14x + 24 = 0\]

\[D_{1} = 49 - 24 = 25\]

\[x_{1} = 7 - 5 = 2;\ \ \ \]

\[x_{2} = 7 + 5 = 12.\]

\[1)\ x_{1} = 2;\ \ \ \ \ \ \ y_{1} = 4;\]

\[2)\ x_{2} = 12;\ \ \ \ y_{2} = - 6.\]

\[Ответ:(2;4);(12; - 6).\]

\[\textbf{в)}\ \left\{ \begin{matrix} 3x + y = 1\ \ \ \\ \frac{1}{x} + \frac{1}{y} = - 2,5 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 1 - 3x\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{1}{x} + \frac{1}{1 - 3x} = - 2,5 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} y = 1 - 3x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{2 - 6x + 2x + 5x - 15x²}{x(1 - 3x)} = 0 \\ \end{matrix} \right.\ \]

\[- 15x^{2} + x + 2 = 0\]

\[15x^{2} - x - 2 = 0\]

\[D = 1 + 120 = 121\]

\[x_{1} = \frac{1 - 11}{30} = - \frac{1}{3};\ \ \]

\[x_{2} = \frac{1 + 11}{30} = \frac{12}{30} = \frac{2}{5}.\]

\[1)\ x_{1} = - \frac{1}{3};\ \ \ \ y_{1} = 2;\]

\[2)\ x_{2} = \frac{2}{5};\ \ \ \ \ \ \ y_{2} = - \frac{1}{5}.\]

\[Ответ:\left( - \frac{1}{3};2 \right);\ \ \left( \frac{2}{5}; - \frac{1}{5} \right).\]

\[\textbf{г)}\ \left\{ \begin{matrix} \frac{1}{y} - \frac{1}{x} = \frac{1}{3}\text{\ \ } \\ x - 2y = 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} x = 2y + 3\ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{3x - 3y - xy}{3xy} = 0 \\ \end{matrix} \right.\ \ \]

\[\left\{ \begin{matrix} x = 2y + 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3 \cdot (2y + 3) - 3y - y(2y + 3) = 0 \\ \end{matrix} \right.\ \]

\[2y^{2} - y - 6 = 0\]

\[D = 1 + 4 \cdot 2 \cdot 6 = 49\]

\[y_{1} = \frac{1 + 7}{4} = 2;\ \ \ \]

\[y_{2} = \frac{1 - 7}{4} = - 1,5.\]

\[1)\ y_{1} = 2;\ \ x_{1} = 6;\]

\[2)\ y_{2} = - 1,5;\ \ x_{2} = - 1.\]

\[Ответ:( - 1; - 1,5);\ \ (6;2).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам