\[\boxed{\text{684\ (684).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{2} - 15x + q = 0,\]
\[\text{\ \ }x_{1}^{2} + x_{2}^{2} = 153\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = 15 \\ x_{1}x_{2} = q\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[x_{1}^{2} + x_{2}^{2} =\]
\[= x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2} - 2x_{1}x_{2} =\]
\[= \left( x_{1} + x_{2} \right)^{2} - 2x_{1}x_{2} =\]
\[= 15^{2} - 2q = 153\]
\[225 - 2q = 153\]
\[2q = 72\]
\[q = 36\]
\[Ответ:q = 36\text{.\ \ }\]
\[\boxed{\text{684.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[1\ ч\ 20\ мин = 1\frac{20}{60}ч =\]
\[= 1\frac{1}{3}\ ч = \frac{4}{3}\ ч;\]
\[45\ мин = \frac{45}{60}\ ч = \frac{3}{4}\ ч.\]
\[a \cdot \frac{4}{3} + b \cdot \frac{3}{4} = \frac{16a + 9b}{12}\ (км) -\]
\[проехал\ автомобиль.\]