\[\boxed{\text{676\ (676).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[3x^{2} + bx + 10 = 0,\]
\[\text{\ \ }x_{1} - x_{2} = 4\frac{1}{3} \Longrightarrow x_{1} = \frac{13}{3} + x_{2}\]
\[x^{2} + \frac{b}{3}x + \frac{10}{3} = 0\ \Longrightarrow\]
\[*D = 169 + 120 = 289 = 17^{2}\]
\[x_{1,2} = \frac{- 13 \pm 17}{6} = \frac{2}{3};\ - 5\]
\[Ответ:b = \pm 17.\ \]
\[\boxed{\text{676.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[x^{2} - y^{2} = 0\]
\[(x - y)(x + y) = 0 \Longrightarrow\]
\[\Longrightarrow \left\lbrack \begin{matrix} x - y = 0 \\ x + y = 0 \\ \end{matrix} \right.\ \Longrightarrow \left\lbrack \begin{matrix} x = y\ \ \ \ \\ x = - y \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\lbrack \begin{matrix} y = x\ \ \ \ \\ y = - x. \\ \end{matrix} \right.\ \]