\[\boxed{\text{674\ (674).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{2} + \frac{70}{12}x + \frac{a^{2} + 1}{12} = 0\]
\[\left\{ \begin{matrix} x_{1} + x_{2} = - \frac{70}{12} \\ x_{1}x_{2} = \frac{a^{2} + 1}{12} \\ \end{matrix} \right.\ \]
\[так\ как\ - \frac{70}{12} < 0,\ то\ \]
\[x_{1} < 0,\ x_{2} < 0\ или\ \]
\[x_{1} < 0,\ x_{2} > 0;\]
\[так\ как\ \frac{a^{2} + 1}{12} > 0,\ то\]
\[x_{1} < 0;\ x_{2} < 0 -\]
\[что\ и\ требовалось\ доказать.\ \]
\[\boxed{\text{674.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[2x - y = 4\]
\[y = 2x - 4\]
\[график\ \text{b.}\]
\[x - y = - 2\]
\[y = x + 2\]
\[график\ a.\]
\[y + 4 = 0\]
\[y = - 4\]
\[график\ d.\]
\[x - 6 = 0\]
\[x = 6\]
\[график\ c.\]