\[\boxed{\text{672\ (672).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 2x^{2} + bx - 10 = 0,\ \ x_{1} = 5\]
\[x_{2} + \frac{b}{2}x - 5 = 0\]
\[Ответ:x_{1} = 5,\ x_{2} = - 1,\ b = - 8\]
\[x_{2} + \frac{b}{3}x + 8 = 0\]
\[- \frac{b}{3} = 3 + \frac{8}{3} = \frac{9 + 8}{3} =\]
\[= \frac{17}{3} \Longrightarrow b = - 17\]
\[Ответ:x_{1} = 3,\ x_{2} = 2\frac{2}{3},\ \]
\[b = - 17.\]
\[x^{2} - \frac{b + 1}{b - 1}x - \frac{72}{b - 1} = 0\]
\[b + 1 = 3b - 3 - 24\]
\[2b = 28\]
\[b = 14\]
\[x_{2} = - \frac{24}{14 - 1} = - \frac{24}{13}\]
\[Ответ:x_{1} = 3,\ x_{2} = - 1\frac{1}{13},\]
\[\ b = 14.\]
\[x^{2} - \frac{b - 2}{b - 5}x + \frac{b}{b - 5} = 0\]
\[\frac{1}{2} + \frac{2b}{b - 5} = \frac{b - 2}{b - 5}\ \ \ \ \ \ \ | \cdot 2(b - 5)\]
\[b - 5 + 4b = 2b - 4\]
\[3b = 1\]
\[b = \frac{1}{3}\]
\[x_{2} = \frac{2b}{b - 5} = \frac{2 \cdot \frac{1}{3}}{\frac{1}{3} - 5} = \frac{\frac{2}{3}}{\frac{1 - 15}{3}} =\]
\[= - \frac{2}{14} = - \frac{1}{7}\]
\[Ответ:x_{1} = 0,5;\ \ \ x_{2} = - \frac{1}{7};\]
\[\ \ \ b = \frac{1}{3}\text{.\ }\]
\[\boxed{\text{672.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\ x - 2y = 8\]
\[\Longrightarrow (2;\ - 3);(8;0);(0;\ - 4).\]
\[\textbf{б)}\ x + 0 \cdot y = 10\]
\[x = 10;\ \ y - любое:\]
\[\Longrightarrow (10;100);(10;200);\ \ \]
\[(10;201).\]
\[\textbf{в)}\ x - xy = 12\]
\[\Longrightarrow (12;0);(4;\ - 2);(6;\ - 1).\]
\[\textbf{г)}\ (x + y)(y - 2) = 0\]
\[\Longrightarrow (1;\ - 1);(2;\ - 2);(3;\ - 3).\]