\[\boxed{\text{670\ (670).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x_{1},\ x_{2} -\]
\[последовательные\ нечетные\ \]
\[натуральные\ числа.\]
\[x_{2}^{3} - x_{1}^{3} = 866,\]
\[\text{\ \ }x_{1} = 2n + 1,\]
\[\text{\ \ }x_{2} = 2n + 3\]
\[Составим\ уравнение:\]
\[(2n + 3)^{3} - (2n + 1)^{3} = 866\]
\[12n^{2} + 24n + 13 = 433\]
\[12n^{2} + 24n - 420 = 0\ \ \ \ \ \ \ \ \ |\ :12\]
\[n^{2} + 2n - 35 = 0\]
\[D = 4 + 140 = 144\]
\[n_{1,2} = \frac{- 2 \pm 12}{2} = 5;\ - 7 < 0\ \ \ \varnothing\]
\[n = 5\ \Longrightarrow x_{1} = 2 \cdot 5 + 1 = 11,\]
\[\text{\ \ }x_{2} = 2 \cdot 5 + 3 = 13\]
\[Ответ:11\ и\ 13.\ \ \ \]
\[\boxed{\text{670.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\ x_{1} = \frac{\sqrt{3} - 1}{2};\ \ \ \ x_{2} = \frac{\sqrt{3} + 1}{2}\]
\[\left( x - x_{1} \right)\left( x - x_{2} \right) = 0\]
\[\left( x - \frac{\sqrt{3} - 1}{2} \right)\left( x - \frac{\sqrt{3} + 1}{2} \right) = 0\]
\[x^{2} - \frac{\sqrt{3} + 1}{2}x - \frac{\sqrt{3} - 1}{2}x +\]
\[+ \frac{\sqrt{3} - 1}{2} \cdot \frac{\sqrt{3} + 1}{2} = 0\]
\[x^{2} - x \cdot \left( \frac{\sqrt{3} + 1}{2} + \frac{\sqrt{3} - 1}{2} \right) +\]
\[+ \frac{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)}{4} = 0\]
\[x^{2} - x \cdot \left( \frac{\sqrt{3} + 1 + \sqrt{3} - 1}{2} \right) +\]
\[+ \frac{3 - 1}{4} = 0\]
\[x^{2} - \frac{2\sqrt{3}}{2}x + \frac{2}{4} = 0\]
\[x^{2} - \sqrt{3}x + \frac{1}{2} = 0;\ \ \ 2x^{2} -\]
\[- \sqrt{3x} + 1 = 0 - искомое\ \]
\[уравнение.\ \]
\[\textbf{б)}\ x_{1} = 2 - \sqrt{3};\ \ x_{2} = \frac{1}{2 - \sqrt{3}}\]
\[\left( x - x_{1} \right)\left( x - x_{2} \right) = 0\]
\[\left( x - \left( 2 - \sqrt{3} \right) \right)\left( x - \frac{1}{2 - \sqrt{3}} \right) = 0\]
\[x^{2} - \frac{1}{2 - \sqrt{3}}x - \left( 2 - \sqrt{3} \right)x +\]
\[+ \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = 0\]
\[x^{2} - x \cdot \left( \frac{1}{2 - \sqrt{3}} + \left( 2 - \sqrt{3} \right) \right) +\]
\[+ 1 = 0\]
\[x^{2} - x \cdot \left( \frac{1 + 4 - 4\sqrt{3} + 3}{2 - \sqrt{3}} \right) +\]
\[+ 1 = 0\]
\[x^{2} - \frac{8 - 4\sqrt{3}}{2 - \sqrt{3}}x + 1 = 0\]
\[x^{2} - \frac{4 \cdot \left( 2 - \sqrt{3} \right)}{2 - \sqrt{3}}x + 1 = 0\]
\[x^{2} - 4x + 1 = 0 - искомое\]
\[\ уравнение.\ \]