\[\boxed{\text{650\ (650).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ (x + 2)^{2} + (x - 3)^{2} = 13\]
\[x^{2} + 4x + 4 + x^{2} - 6x + 9 = 13\]
\[2x^{2} - 2x = 0\]
\[2x(x - 1) = 0\]
\[2x = 0\ \ \ \ \ \ \ \ x - 1 = 0\]
\[\ \ \ x = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 1\]
\[Ответ:x = \left\{ 0;1 \right\}.\]
\[\textbf{б)}\ (3x - 5)^{2} - (2x + 1)^{2} = 24\]
\[9x^{2} - 30x + 25 - 4x^{2} - 4x - 1 = 24\]
\[5x^{2} - 34x = 0\]
\[x(5x - 34) = 0\]
\[x = 0\ \ \ \ \ \ \ \ \ \ 5x = 34\ \ \ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 34\ :5\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 6,8\]
\[Ответ:x = \left\{ 0;6,8 \right\}.\]
\[\textbf{в)}\ (x - 4)\left( x^{2} + 4x + 16 \right) + 28 =\]
\[= x^{2}(x - 25)\]
\[25x^{2} = 36\]
\[x^{2} = \frac{36}{25}\]
\[x = \pm \frac{6}{5} = \pm 1,2\]
\[Ответ:x = \left\{ - 1,2;1,2 \right\}.\]
\[\textbf{г)}\ (2x + 1)\left( 4x^{2} - 2x + 1 \right) - 1 =\]
\[= 1,6x^{2}(5x - 2)\]
\[- 3,2x^{2} = 0\]
\[x = 0\]
\[Ответ:x = 0\text{.\ }\]
\[\boxed{\text{650.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Пусть\ \text{v\ }\frac{км}{ч} - скорость\ \]
\[первого\ лыжника,\ \]
\[тогда\ (v + 2)\ \frac{км}{ч} -\]
\[скорость\ второго\ лыжника.\ \]
\[Известно,\ что\ второй\ \]
\[лыжник\ прошел\]
\[20\ мин = \frac{20}{60} = \frac{1}{3}\ ч\ быстрее.\]
\[Составим\ уравнение:\ \ \]
\[\frac{20}{v} - \frac{20}{v + 2} = \frac{1}{3}\]
\[\frac{20v + 40 - 20v}{v(v + 2)} = \frac{1}{3}\]
\[3 \cdot 40 = v^{2} + 2v\]
\[v^{2} + 2v - 120 = 0\]
\[D = 4 + 480 = 484\]
\[v_{1,2} = \frac{- 2 \pm 22}{2} = 10;\ \]
\[- 12 < 0 - не\ подходит\]
\[10\frac{км}{ч} - скорость\ одного\ \]
\[лыжника.\]
\[v_{1} = v_{2} + 2 = 10 + 2 =\]
\[= 12\ \left( \frac{км}{ч} \right) - скорость\ \]
\[другого\ лыжника.\]
\[Ответ:10\frac{км}{ч}\ и\ 12\frac{км}{ч}\text{.\ }\]