\[\boxed{\text{637\ (637).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ при\ x = 5 + 2\sqrt{6},\]
\[\ \ y = 5 - 2\sqrt{6}:\]
\[\frac{\text{xy}}{x + y} = \frac{\left( 5 + 2\sqrt{6} \right)\left( 5 - 2\sqrt{6} \right)}{5 + 2\sqrt{6} + 5 - 2\sqrt{6}} =\]
\[= \frac{25 - 4 \cdot 6}{10} = \frac{25 - 24}{10} =\]
\[= \frac{1}{10} = 0,1.\]
\[\textbf{б)}\ при\ x = \sqrt{11} + \sqrt{3},\]
\[\ \ y = \sqrt{11} - \sqrt{3}\]
\[\frac{x^{2} + y^{2}}{\text{xy}} =\]
\[= \frac{\left( \sqrt{11} + \sqrt{3} \right)^{2} + \left( \sqrt{11} - \sqrt{3} \right)^{2}}{\left( \sqrt{11} + \sqrt{3} \right)\left( \sqrt{11} - \sqrt{3} \right)} =\]
\[= \frac{28}{8} = \frac{14}{4} = \frac{7}{2} = 3,5.\ \]
\[\boxed{\text{637.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\frac{3y + 9}{3y - 1} + \frac{2y - 13}{2y + 5} =\]
\[= 2\ \ \ \ \ \ \ \ \ \ | \cdot (3y - 1)(2y + 5)\]
\[3y - 1 \neq 0,\ \ 3y \neq 1,\]
\[\ \ y \neq \frac{1}{3}\]
\[2y + 5 \neq 0,\ \ 2y \neq - 5,\]
\[\ \ y \neq - 2,5\]
\[(3y + 9)(2y + 5) +\]
\[+ (2y - 13)(3y - 1) =\]
\[= 2 \cdot (3y - 1)(2y + 5)\]
\[6y^{2} + 15y + 18y + 45 + 6y^{2} -\]
\[- 2y - 39y + 13 =\]
\[= 12y^{2} + 30y - 4y - 10\]
\[- 34y = - 68\]
\[y = 2\]
\[Ответ:y = 2.\]
\[\textbf{б)}\frac{5y + 13}{5y + 4} - \frac{4 - 6y}{3y - 1} =\]
\[= 3\ \ \ \ \ \ | \cdot (5y + 4)(3y - 1)\]
\[5y + 4 \neq 0,\ \ 5y \neq - 4,\]
\[\ \ y \neq - \frac{4}{5}\]
\[3y - 1 \neq 0,\ \ 3y \neq 1,\]
\[\ \ y \neq \frac{1}{3}\]
\[(5y + 13)(3y - 1) -\]
\[- (4 - 6y)(5y + 4) =\]
\[= 3 \cdot (5y + 4)(3y - 1)\]
\[15y^{2} - 5y + 39y - 13 - 20y -\]
\[- 16 + 30y^{2} + 24y =\]
\[= 45y^{2} - 15y + 36y - 12\]
\[17y = 17\]
\[y = 1\]
\[Ответ:y = 1.\]
\[\textbf{в)}\frac{y + 1}{y - 5} + \frac{10}{y + 5} =\]
\[= \frac{y + 1}{y - 5} \cdot \frac{10}{y + 5}\ \ \ \ \ \ \ | \cdot \left( y^{2} - 25 \right)\]
\[y - 5 \neq 0,\ \ y \neq 5\]
\[y + 5 \neq 0,\ \ y \neq - 5\]
\[(y + 1)(y + 5) + 10 \cdot (y - 5) =\]
\[= 10 \cdot (y + 1)\]
\[y^{2} + 5y + y + 5 + 10y - 50 =\]
\[= 10y + 10\]
\[y^{2} + 6y - 55 = 0\]
\[D = 36 + 220 = 256 = 16^{2}\]
\[y_{1,2} = \frac{- 6 \pm 16}{2}\]
\[y_{1} = 5 - не\ подходит\ по\ ОДЗ;\ \]
\[y_{2} = - 11\]
\[Ответ:y = - 11.\]
\[\textbf{г)}\frac{6}{y - 4} - \frac{y}{y + 2} =\]
\[= \frac{6}{y - 4} \cdot \frac{y}{y + 2}\text{\ \ \ \ \ \ }\]
\[| \cdot (y + 2)(y - 4)\]
\[y - 4 \neq 0,\ \ y \neq 4\]
\[y + 2 \neq 0,\ \ y \neq - 2\]
\[6 \cdot (y + 2) - y \cdot (y - 4) = 6y\]
\[6y + 12 - y^{2} + 4y = 6y\]
\[6y + 12 - y^{2} + 4y = 6y\ | \cdot ( - 1)\]
\[y^{2} - 4y - 12 = 0\]
\[D = 16 + 48 = 64\]
\[y_{1,2} = \frac{4 \pm 8}{2}\]
\[y_{1} = 6;\ \ y_{2} = - 2 - не\ \]
\[подходит\ по\ ОДЗ\]
\[Ответ:y = 6.\ \]