\[\boxed{\text{580\ (580).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ x^{2} - 37x + 27 = 0\] \[D = 1369 - 108 > 0\] \[по\ теореме\ Виета:\] \[x_{1} + x_{2} = 37\] \[x_{1}x_{2} = 27\] |
\[\textbf{д)}\ 2x^{2} - 9x - 10 = 0\ \ \ \ |\ :2\] \[x^{2} - 4,5x - 5 = 0\] \[D = 20,25 + 20 > 0\] \[по\ теореме\ Виета:\] \[x_{1} + x_{2} = 4,5\] \[x_{1}x_{2} = - 5\] |
---|---|
\[\textbf{б)}\ y^{2} + 41y - 371 = 0\] \[D = 1681 + 1484 > 0\] \[по\ теореме\ Виета:\] \[y_{1} + y_{2} = - 41\] \[y_{1}y_{2} = - 371\] |
\[\textbf{е)}\ 5x^{2} + 12x + 7 = 0\ \ \ \ \ \ \ \ |\ :5\] \[x^{2} + 2,4x + 1,4 = 0\] \[D = 5,76 + 5,6 > 0\] \[по\ теореме\ Виета:\] \[x_{1} + x_{2} = - 2,4\] \[x_{1}x_{2} = 1,4\] |
\[\textbf{в)}\ x^{2} - 210x = 0\] \[x^{2} - 210x + 0 = 0\] \[x_{1} + x_{2} = 210\] \[x_{1}x_{2} = 0\] |
\[\textbf{ж)} - z^{2} + z = 0\] \[z^{2} - z + 0 = 0\] \[z_{1} + z_{2} = 1\] \[z_{1}z_{2} = 0\] |
\[\textbf{г)}\ y^{2} - 19 = 0\] \[y^{2} + 0x - 19 = 0\] \[y_{1} + y_{2} = 0;\] \[y_{1}y_{2} = - 19.\] |
\[\textbf{з)}\ 3x^{2} - 10 = 0\] \[3x^{2} + 0x - 10 = 0\ \ \ |\ :3\] \[x^{2} + 0x - \frac{10}{3} = 0\] \[x_{1} + x_{2} = 0\] \[x_{1}x_{2} = - \frac{10}{3}\text{.\ }\] |
\(\boxed{\text{580.}\text{\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\)
Пояснение.
Решение.