\[\boxed{\text{133\ (133).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{6x^{2}}{5y}\ :\frac{3x}{10y^{3}} = \frac{6x^{2}}{5y} \cdot \frac{10y^{3}}{3x} =\]
\[= \frac{2x \cdot 3x \cdot 5y \cdot 2y^{2}}{5y \cdot 3x} = \frac{4xy^{2}}{1} =\]
\[= 4xy^{2}\]
\[\textbf{б)}\ \frac{8c}{21d^{2}}\ :\frac{6c^{2}}{7d} = \frac{8c}{21d^{2}} \cdot \frac{7d}{6c^{2}} =\]
\[= \frac{4 \cdot 2c \cdot 7d}{3d \cdot 7d \cdot 3c \cdot 2c} = \frac{4}{9cd}\]
\[\textbf{в)}\ \frac{3ab}{4xy}\ :\left( - \frac{21a^{2}b}{10x^{2}y} \right) =\]
\[= - \frac{3ab}{4xy} \cdot \frac{10x^{2}y}{21a^{2}b} =\]
\[= - \frac{3ab \cdot 2xy \cdot 5x}{2 \cdot 2xy \cdot 3ab \cdot 7a} = - \frac{5x}{14a}\]
\[\textbf{г)} - \frac{18a^{2}b^{2}}{5cd}\ :\left( - \frac{9ab^{3}}{5c^{2}d^{4}} \right) =\]
\[= \frac{18a^{2}b^{2}}{5cd} \cdot \frac{5c^{2}d^{4}}{9ab^{3}} =\]
\[= \frac{2a \cdot 9ab^{2} \cdot 5cd \cdot cd^{3}}{5cd \cdot 9ab^{2} \cdot b} = \frac{2acd^{3}}{b}\]
\[\boxed{\text{133.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Чтобы выразить одну переменную через другую, нужно понять, что это уравнение с неизвестным (той переменной, которую нужно выразить).
Поэтому просто решаем уравнение, по шагам.
Решение.
\[3x = a - b\]
\[x = \frac{a - b}{3}\]
\[- 7x = a - b - b\]
\[- 7x = a - 2b\]
\[x = - \frac{a - 2b}{- 7}\]
\[x = \frac{2b - a}{7}\]
\[\frac{x}{a} = b - 1\]
\[x = a \cdot (b - 1)\]
\[\frac{x}{10} = b - a\]
\[x = 10(b - a)\ \]