\[\boxed{\text{1328.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\left\{ \begin{matrix} xy = - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x - y)^{2} + x + y = 10 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = - \frac{2}{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \left( x + \frac{2}{x} \right)^{2} + x - \frac{2}{x} = 10 \\ \end{matrix} \right.\ \]
\[\left( x + \frac{2}{x} \right)^{2} + x - \frac{2}{x} = 10\]
\[x^{2} + 4 + \frac{4}{x^{2}} + x - \frac{2}{x} - 10 = 0\]
\[x^{2} + \frac{4}{x²} + x - \frac{2}{x} - 6 = 0\]
\[\left( x^{2} + \frac{4}{x^{2}} \right) + \left( x - \frac{2}{x} \right) - 6 = 0\]
\[Пусть\ x - \frac{2}{x} = t;\]
\[x^{2} + \frac{4}{x^{2}} = t^{2} + 4.\]
\[t^{2} + 4 + t - 6 = 0\]
\[t^{2} + t - 2 = 0\]
\[t_{1} + t_{2} = - 1;\ \ t_{1} \cdot t_{2} = - 2\]
\[t_{1} = - 2;\ \ t_{2} = 1.\]
\[1)\ x - \frac{2}{x} = - 2\]
\[x^{2} - 2 + 2x = 0\]
\[x^{2} + 2x - 2 = 0\]
\[D_{1} = 1 + 2 = 3\]
\[x_{1} = - 1 + \sqrt{3};\ \ \ x_{2} = - 1 - \sqrt{3};\]
\[y_{1} = - \frac{2}{- 1 + \sqrt{3}} =\]
\[= - \frac{2 \cdot \left( \sqrt{3} + 1 \right)}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} =\]
\[= - \frac{2 \cdot \left( \sqrt{3} + 1 \right)}{2} = - 1 - \sqrt{3};\]
\[y_{2} = - \frac{2}{- 1 - \sqrt{3}} = - 1 + \sqrt{3}.\]
\[2)\ x - \frac{2}{x} = 1\]
\[x^{2} - 2 - x = 0\]
\[x^{2} - x - 2 = 0\]
\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 2\]
\[x_{1} = 2;\ \ \ x_{2} = - 1;\]
\[y_{1} = - \frac{2}{x} = - 1;\ \ \ y_{2} = - \frac{2}{- 1} = 2.\]
\[Ответ:( - 1;2);(2; - 1);\]
\[\left( - 1 + \sqrt{3};\ - 1 - \sqrt{3} \right);\]
\[\left( - 1 - \sqrt{3};\ - 1 + \sqrt{3} \right).\]