\[\boxed{\text{1326.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} - 3y^{2} - y = - 6 \\ 2x^{2} - 3y^{2} = - 4\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\ \left\{ \begin{matrix} x^{2} = \left( 3y^{2} + y - 6 \right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ 2 \cdot \left( 3y^{2} + y - 6 \right) - 3y^{2} = - 4 \\ \end{matrix} \right.\ \]
\[6y^{2} + 2y - 12 - 3y^{2} + 4 = 0\]
\[3y^{2} + 2y - 8 = 0\]
\[D_{1} = 1 + 24 = 25\]
\[y_{1} = \frac{- 1 + 5}{3} = \frac{4}{3};\ \ \ \]
\[y_{2} = \frac{- 1 - 5}{3} = - 2.\]
\[1)\ y = \frac{4}{3}:\]
\[x^{2} = 3 \cdot \frac{16}{9} + \frac{4}{3} - 6 = \frac{16}{3} +\]
\[+ \frac{4}{3} - 6 = \frac{20}{3} - \frac{18}{3} = \frac{2}{3}\]
\[x = \pm \sqrt{\frac{2}{3}}.\]
\[2)\ y = - 2:\]
\[x^{2} = 3 \cdot 4 - 2 - 6 = 4\]
\[x = \pm 2.\]
\[Ответ:\left( - \sqrt{\frac{2}{3}};\frac{4}{3} \right);\ \ \left( \sqrt{\frac{2}{3}};\frac{4}{3} \right);\]
\[( - 2; - 2);(2; - 2).\]
\[\textbf{б)}\ \left\{ \begin{matrix} 2x^{2} + xy = 16\ \ \ \ \ \ \ \ \ \\ 3x^{2} + xy - x = 18\ \\ \end{matrix} \right.\ ( - )\]
\[- x^{2} + x = - 2\]
\[x^{2} - x - 2 = 0\]
\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 2\]
\[x_{1} = 2;\ \ \ x_{2} = - 1.\]
\[xy = 16 - 2x^{2}\]
\[y = \frac{16 - 2x²}{x}\ \]
\[y(2) = \frac{16 - 8}{2} = 4;\]
\[y( - 1) = \frac{16 - 2}{- 1} = - 14.\]
\[Ответ:(2;4);( - 1; - 14).\]