\[\boxed{\text{1287.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Зададим\ І\ число\ p + t\sqrt{2},\]
\[\ \ а\ ІІ\ число\ x + y\sqrt{2}:\ \]
\[Сумма:\ \ \ p + t\sqrt{2} + x + y\sqrt{2} =\]
\[= (p + x) + \sqrt{2} \cdot (t + y) =\]
\[= a + b\sqrt{2}\]
\[a = x + p,\ \ b = y + t.\]
\[Разность:\ p + t\sqrt{2} - x - y\sqrt{2} =\]
\[= (p - x) + \sqrt{2} \cdot (t - y) =\]
\[= a + b\sqrt{2}\]
\[a = p - x,\ \ b = t - y.\]
\[Произведение:\ \]
\[\left( p + t\sqrt{2} \right)\left( x + y\sqrt{2} \right) = px +\]
\[+ py\sqrt{2} + tx\sqrt{2} + 2ty =\]
\[= (px + 2ty) + \sqrt{2} \cdot (py + tx) =\]
\[= a + b\sqrt{2}\]
\[a = px + 2ty,\ \ b = py + xt.\]
\[Частное:\ \]
\[\frac{p + t\sqrt{2}}{x + y\sqrt{2}} =\]
\[= \frac{\left( p + t\sqrt{2} \right)\left( x - y\sqrt{2} \right)}{\left( x + y\sqrt{2} \right)\left( x - y\sqrt{2} \right)} =\]
\[= \frac{\left( p + t\sqrt{2} \right)\left( x - y\sqrt{2} \right)}{x^{2} - 2y^{2}} =\]
\[= \frac{xp - yp\sqrt{2} + tx\sqrt{2} - yt \cdot 2}{x^{2} - 2y^{2}} =\]
\[= \frac{(xp - 2ty) - \sqrt{2} \cdot (yp - tx)}{x^{2} - 2y^{2}} =\]
\[= \frac{xp - 2ty}{x^{2} - 2y^{2}} - \frac{\sqrt{2} \cdot (yp - tx)}{x^{2} - 2y^{2}} =\]
\[= a + b\sqrt{2}\]
\[a = \frac{xp - 2ty}{x^{2} - 2y^{2}},\]
\[\ \ b = \frac{(yp - tx)}{x^{2} - 2y^{2}}\]