\[\boxed{\text{121\ (121).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{\text{xy}}{a^{2} + a^{3}} \cdot \frac{a + a^{2}}{x^{2}y^{2}} =\]
\[= \frac{\text{xy}}{a^{2}(1 + a)} \cdot \frac{a(1 + a)}{x^{2}y^{2}} =\]
\[\textbf{б)}\ \frac{6a}{x^{2} - x} \cdot \frac{2x - 2}{3ax} =\]
\[= \frac{6a}{x(x - 1)} \cdot \frac{2 \cdot (x - 1)}{3ax} =\]
\[\boxed{\text{121.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{x^{2} - xy}{y} \cdot \frac{y^{2}}{x} =\]
\[= \frac{x \cdot (x - y) \cdot y^{2}}{y \cdot x} =\]
\[= y \cdot (x - y) = xy - y^{2}\]
\[\textbf{б)}\frac{3a}{b^{2}} \cdot \frac{ab + b^{2}}{9} =\]
\[= \frac{3a \cdot b \cdot (a + b)}{9b^{2}} =\]
\[= \frac{a(a + b)}{3b} = \frac{a^{2} + ab}{3b}\]
\[\textbf{в)}\ \frac{m - n}{\text{mn}} \cdot \frac{2mn}{mn - m^{2}} =\]
\[= \frac{(m - n) \cdot 2mn}{mn \cdot m \cdot (n - m)} =\]
\[\textbf{г)}\frac{4ab}{cx + dx} \cdot \frac{ax + bx}{2ab} =\]
\[= \frac{4ab \cdot x(a + b)}{x \cdot (c + d) \cdot 2ab} =\]
\[= \frac{2 \cdot (a + b)}{c + d}\]
\[\textbf{д)}\ \frac{ma - mb}{3n^{2}} \cdot \frac{2m}{nb - na} =\]
\[= \frac{m(a - b) \cdot 2m}{3n^{2} \cdot n \cdot (b - a)} =\]
\[\textbf{е)}\ \frac{ax - ay}{5x^{2}y^{2}} \cdot \left( - \frac{5xy}{by - bx} \right) =\]
\[= - \frac{a \cdot (x - y) \cdot 5xy}{5x^{2}y^{2} \cdot b(y - x)} =\]