\[\boxed{\text{1202.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\ 125^{- 1} \cdot 25² = 5^{- 3} \cdot 5^{4} =\]
\[= 5^{- 3 + 4} = 5^{1} = 5\]
\[\textbf{б)}\ 16^{- 3} \cdot 4^{6} = 4^{- 6} \cdot 4^{6} =\]
\[= 4^{- 6 + 6} = 4^{0} = 1\]
\[\textbf{в)}\ \left( 6^{2} \right)^{6}\ :6^{14} = 6^{12}:6^{14} =\]
\[= 6^{12 - 14} = 6^{- 2} = \frac{1}{36}\]
\[\textbf{г)}\ 12^{0}\ :\left( 12^{- 1} \right)^{2} = 12^{0}\ :12^{- 2} =\]
\[= 12^{0 - ( - 2)} = 12² = 144\]
\[\textbf{д)}\ \frac{\left( 2^{3} \right)^{5} \cdot \left( 2^{- 6} \right)^{2}}{4^{2}} = \frac{2^{15} \cdot 2^{- 12}}{2^{4}} =\]
\[= 2^{15 + ( - 12) - 4} = 2^{15 - 12 - 4} =\]
\[= 2^{- 1} = \frac{1}{2} = 0,5\]
\[\textbf{е)}\ \frac{\left( 3^{- 2} \right)^{3} \cdot 9^{4}}{\left( 3^{3} \right)^{2}} =\]
\[= \frac{3^{- 6} \cdot 3^{8}}{3^{6}}{= 3}^{- 6 + 8 - 6} = 3^{- 4} =\]
\[= \frac{1}{81}\]