Решебник по алгебре 8 класс Макарычев ФГОС Задание 1121

Авторы:
Год:2021
Тип:учебник

Задание 1121

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{1121\ (1121).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Рациональные числа – это числа, которые можно представить в виде дроби, где числитель и знаменатель являются целыми числами.

Сумма, разность, произведение и частное рациональных чисел есть рациональное число.

При решении используем следующее:

1. Чтобы вынести общий множитель за скобки, надо каждый член многочлена разделить на их наибольший общий делитель и результат записать в скобках, а общий множитель за скобками:

\[\mathbf{ab + b}\mathbf{m}\mathbf{= b \bullet}\left( \mathbf{a + m} \right)\mathbf{.}\]

2. Формулу умножения многочлена на многочлен – каждое число из первой скобки умножить на каждое число из второй:

\[\left( \mathbf{a + b} \right)\left( \mathbf{c + d} \right)\mathbf{= ac + ad + bc + bd.}\]

3. Формулу произведения разности двух выражений на их сумму – произведение разности двух выражений и их суммы равно разности квадратов этих выражений:

\[\left( \mathbf{a - b} \right)\left( \mathbf{a + b} \right)\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

Решение.

\[Зададим\ І\ число\ p + t\sqrt{2},\]

\[а\ ІІ\ число\ x + y\sqrt{2}:\ \]

\[Сумма:\ \ \ p + t\sqrt{2} + x + y\sqrt{2} =\]

\[= (p + x) + \sqrt{2} \cdot (t + y) =\]

\[= a + b\sqrt{2}\]

\[a = x + p,\ \ b = y + t.\]

\[Разность:\ p + t\sqrt{2} - x - y\sqrt{2} =\]

\[= (p - x) + \sqrt{2} \cdot (t - y) =\]

\[= a + b\sqrt{2}\]

\[a = p - x,\ \ b = t - y.\]

\[Произведение:\ \]

\[\left( p + t\sqrt{2} \right)\left( x + y\sqrt{2} \right) =\]

\[= px + py\sqrt{2} + tx\sqrt{2} + 2ty =\]

\[= (px + 2ty) + \sqrt{2} \cdot (py + tx) =\]

\[= a + b\sqrt{2}\]

\[a = px + 2ty,\ \ b = py + xt.\]

\[Частное:\ \]

\[\frac{p + t\sqrt{2}}{x + y\sqrt{2}} =\]

\[= \frac{\left( p + t\sqrt{2} \right)\left( x - y\sqrt{2} \right)}{\left( x + y\sqrt{2} \right)\left( x - y\sqrt{2} \right)} =\]

\[= \frac{\left( p + t\sqrt{2} \right)\left( x - y\sqrt{2} \right)}{x^{2} - 2y^{2}} =\]

\[= \frac{xp - yp\sqrt{2} + tx\sqrt{2} - yt \cdot 2}{x^{2} - 2y^{2}} =\]

\[= \frac{(xp - 2ty) - \sqrt{2} \cdot (yp - tx)}{x^{2} - 2y^{2}} =\]

\[= \frac{xp - 2ty}{x^{2} - 2y^{2}} - \frac{\sqrt{2} \cdot (yp - tx)}{x^{2} - 2y^{2}} =\]

\[= a + b\sqrt{2}\]

\[a = \frac{xp - 2ty}{x^{2} - 2y^{2}},\]

\[\ \ b = \frac{(yp - tx)}{x^{2} - 2y^{2}}\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{1121.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[y = kx + 10.\]

\[\textbf{а)}\ k > 0:\]

\[в\ I;II;III\ четвертях.\]

\[\textbf{б)}\ k < 0:\]

\[в\ I;II;IV\ четвертях.\]

\[\textbf{в)}\ k = 0:\]

\[в\ І\ и\ ІІ\ четвертях.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам