Решебник по алгебре 8 класс Макарычев ФГОС Задание 1106

Авторы:
Год:2021
Тип:учебник

Задание 1106

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{1106\ (1106).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

аn (а в n-ой степени) – число «n» называют показателем степени, а число «а» – основанием степени. Степень говорит нам о том, сколько раз следует умножить число «a» само на себя. Например, 34=3*3*3*3=81.

При решении используем:

1. Формулу квадрата суммы:

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений плюс квадрат второго выражения:

\[\mathbf{(}\mathbf{a}\mathbf{+}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

2. Формулу суммы кубов:

Сумма кубов двух выражений равна произведению суммы этих выражений и неполного квадрата их разности:

\[\mathbf{a}^{\mathbf{3}}\mathbf{+}\mathbf{b}^{\mathbf{3}}\mathbf{=}\left( \mathbf{a + b} \right)\mathbf{\bullet}\left( \mathbf{a}^{\mathbf{2}}\mathbf{- ab +}\mathbf{b}^{\mathbf{2}} \right)\mathbf{.}\]

3. Степень с отрицательным показателем – это дробь, числителем которой является единица, а знаменателем – данное число с положительным показателем:

\[\mathbf{a}^{\mathbf{- n}}\mathbf{=}\frac{\mathbf{1}}{\mathbf{a}^{\mathbf{n}}}\mathbf{.}\]

4. При умножении степеней с одинаковыми основаниями показатели складываются, а основание оставляют прежним:

\[\mathbf{a}^{\mathbf{m}}\mathbf{\bullet}\mathbf{a}^{\mathbf{n}}\mathbf{=}\mathbf{a}^{\mathbf{m + n}}\mathbf{.}\]

5. При возведении произведения в степень каждый множитель возводят в степень и полученные результаты перемножают:

\(\mathbf{(}\mathbf{\text{ab}}\mathbf{)}^{\mathbf{n}}\mathbf{=}\mathbf{a}^{\mathbf{n}}\mathbf{\bullet}\mathbf{b}^{\mathbf{n}}\).

6. Чтобы вынести общий множитель за скобки, надо каждый член многочлена разделить на их наибольший общий делитель и результат записать в скобках, а общий множитель за скобками:

\[\mathbf{ab + b}\mathbf{m}\mathbf{= b \bullet}\left( \mathbf{a + m} \right)\mathbf{.}\]

7. Сократить дробь – это значит разделить ее числитель и знаменатель на общий множитель (число, на которое делится и числитель, и знаменатель без остатка).

Решение.

\[\textbf{а)}\ \frac{x^{4} + a^{2}x^{2} + a^{4}}{x^{3} + a^{3}} =\]

\[= \frac{x^{4} + 2a^{2}x^{2} + a^{4} - a^{2}x^{2}}{(x + a)\left( x^{2} - ax + a^{2} \right)} =\]

\[= \frac{\left( x^{2} + a^{2} \right)^{2} - a^{2}x^{2}}{(x + a)\left( x^{2} - ax + a^{2} \right)} =\]

\[= \frac{\left( x^{2} + a^{2} - ax \right)\left( x^{2} + a^{2} + ax \right)}{(x + a)\left( x^{2} - ax + a^{2} \right)} =\]

\[= \frac{x² + a² + ax}{x + a}\]

\[\textbf{б)}\ \frac{8a^{n + 2} + a^{n - 1}}{16a^{n + 4} + 4a^{n + 2} + a^{n}} =\]

\[= \frac{8a^{n} \cdot a^{2} + \frac{a^{n}}{a}}{16a^{n} \cdot a^{4} + 4a^{n}a^{2} + a^{n}} =\]

\[= \frac{a^{n}\left( 8a^{2} + \frac{1}{a} \right)}{a^{n}\left( 16a^{4} + 4a^{2} + 1 \right)} =\]

\[= \frac{\frac{8a^{3} + 1}{a}}{(2a)^{4} + (2a)^{2} + 1} =\]

\[= \frac{(2a)^{3} + 1}{a(\left( (2a)^{2} + 1 \right)^{2} - (2a)^{2})} =\]

\[= \frac{2a + 1}{a(4a^{2} + 2a + 1)}\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{1106.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[\textbf{а)} - 0,8x + 12 = 0\]

\[0,8x = 12\]

\[x = 15\]

\[Ответ:x = 15.\]

\[\textbf{б)}\ (3x - 10)(x + 6) = 0\]

\(3x - 10 = 0\ \ \)

\[3x = 10\]

\[x = 3\frac{1}{3}.\]

\[x + 6 = 0\]

\[x = - 6.\]

\[Ответ:x = 3\frac{1}{3};\ \ x = - 6.\]

\[\textbf{в)}\ \ \frac{4 + 2x}{x^{2} + 5} = 0\]

\[4 + 2x = 0\]

\[x = - 2\]

\[Ответ:x = - 2.\]

\[\textbf{г)}\ \frac{6}{(x - 1)(x + 8)} = 0 \Longrightarrow нулей\ \]

\[не\ существует.\]

\[Ответ:нулей\ функции\ \]

\[не\ существует.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам