Условие:
1. При каких значениях переменной имеет смысл выражение 5/(x-2)?
2. Сократите дробь:
1) (26a^2 b^8)/(39a^7 b^4 )
2) (10mn-25n)/5mn
3) (x^2-16)/(2x+8)
4) (x^2-18x+81)/(81-x^2 )
3. Выполните вычитание:
1) (3-2y)/y^2 -(y-12)/6y
2) 20/(a^2+5a)-4/a
3) y/(y-10)-y^2/(y^2-100)
4) (12c^2)/(2c-3)-6c
4. Упростите выражение:
1) (a-15)/(4a-20)-(a-5)/(4a+20)+30/(a^2-25)
2) (8a^3+100a)/(a^3+125)-(4a^2)/(a^2-5a+25)
5. Известно, что (k-2p)/p=3. Найдите значение выражения:
1) p/k;
2) (6p-7k)/p.
6. Постройте график функции y=(x^2-36)/(x+6)-(3x^2+2x)/x.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[\frac{5}{x - 2}\]
\[x - 2 \neq 0\]
\[x \neq 2\]
\[Выражение\ имеет\ смысл\ при\ любом\ x,\]
\[кроме\ x = 2.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{26a^{5}b^{8}}{39a^{7}b^{4}} = \frac{2b^{4}}{3a^{2}}\]
\[2)\frac{10mn - 25n}{5mn} = \frac{5n(2m - 5)}{5mn} =\]
\[= \frac{2m - 5}{m}\]
\[3)\frac{x^{2} - 16}{2x + 8} = \frac{(x - 4)(x + 4)}{2(x + 4)} =\]
\[= \frac{x - 4}{2}\]
\[4)\frac{x^{2} - 18x + 81}{81 - x^{2}} =\]
\[= \frac{(9 - x)^{2}}{(9 - x)(9 + x)} = \frac{9 - x}{9 + x}\ \]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{3 - 2y^{\backslash 6}}{y^{2}} - \frac{y - 12^{\backslash y}}{6y} =\]
\[= \frac{18 - 12y - y^{2} + 12y}{6y^{2}} =\]
\[= \frac{18 - y^{2}}{6y^{2}}\]
\[2)\frac{20}{a^{2} + 5a} - \frac{4}{a} =\]
\[= \frac{20}{a(a + 5)} - \frac{4^{\backslash a + 5}}{a} =\]
\[= \frac{20 - 4a - 20}{a(a + 5)} = - \frac{4a}{a(a + 5)} =\]
\[= - \frac{4}{a + 5}\]
\[3)\frac{y^{\backslash y + 10}}{y - 10} - \frac{y^{2}}{y^{2} - 100} =\]
\[= \frac{y^{2} + 10y - y^{2}}{(y - 10)(y + 10)} = \frac{10y}{y^{2} - 100\ }\]
\[4)\frac{12c^{2}}{2c - 3} - 6c^{\backslash 2c - 3} =\]
\[= \frac{12c^{2} - 12c^{2} + 18c}{2c - 3} = \frac{18c}{2c - 3}\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{a - 15}{4a - 20} - \frac{a - 5}{4a + 20} + \frac{30}{a^{2} - 25} =\]
\[= \frac{20}{4(a - 5)(a + 5)} = \frac{5}{a^{2} - 25}\]
\[2)\frac{8a^{3} + 100a}{a^{3} + 125} - \frac{4a^{2}}{a^{2} - 5a + 25} =\]
\[= \frac{8a^{3} + 100a - 4a^{3} - 20a^{2}}{(a + 5)\left( a^{2} - 5a + 25 \right)} =\]
\[= \frac{4a^{3} - 20a^{2} + 100a}{(a + 5)\left( a^{2} - 5a + 25 \right)} =\]
\[= \frac{4a(a^{2} - 5a + 25)}{(a + 5)\left( a^{2} - 5a + 25 \right)} = \frac{4a}{a + 5}\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[\frac{k - 2p}{p} = 3\]
\[\frac{k}{p} - \frac{2p}{p} = 3\]
\[\frac{k}{p} - 2 = 3\]
\[\frac{k}{p} = 3 + 2 = 5\]
\[1)\frac{p}{k} = \frac{1}{5}.\]
\[2)\frac{6p - 7k}{p} = \frac{6p}{p} - \frac{7k}{p} = 6 - 7 \cdot \frac{k}{p} =\]
\[= 6 - 7 \cdot 5 = 6 - 35 = - 29.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[y = \frac{x^{2} - 36}{x + 6} - \frac{3x^{2} + 2x}{x} =\]
\[= \frac{(x - 6)(x + 6)}{x + 6} - \frac{x(3x + 2)}{x} =\]
\[= x - 6 - (3x + 2) =\]
\[= x - 6 - 3x - 2 =\]
\[= - 2x - 8\]
\[y = - 2x - 8;\ \ \ x \neq 0;\ \ x \neq - 6\]