Условие:
1. При каких значениях переменной имеет смысл выражение 5/(x-7)?
2. Сократите дробь:
1) (14a^6 b^4)/(35a^3 b^5 )
2) (12xy-3x)/3xy
3) (y^2-4)/(3y+6)
4) (16-x^2)/(x^2+8x+16)
3. Выполните вычитание:
1)(x-3)/(3x^2 )-(7-x)/x^3
2) 36/(a^2+3a)-12/a
3) a^2/(a^2-25)-a/(a-5)
4) (20x^2)/(4x-7)-5x
4. Упростите выражение:
1) (a+12)/(4a+16)-(a+4)/(4a-16)+19/(a^2-16)
2) (8a^3+36a)/(a^3+27)-(4a^2)/(a^2-3a+9)
5. Известно, что (x+2y)/y=5. Найдите значение выражения:
1) y/x;
2) (3x+y)/y.
6. Постройте график функции y=(x^2-25)/(x-5)-(2x^2+6x)/x.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[\frac{5}{x - 7}\]
\[x - 7 \neq 0\]
\[x \neq 7.\]
\[Выражение\ имеет\ смысл\ при\ \]
\[любом\ x,кроме\ x = 7.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{14a^{6}b^{4}}{35a^{3}b^{5}} = \frac{2a^{3}}{5b}\]
\[2)\frac{12xy - 3x}{3xy} = \frac{3x(4y - 1)}{3xy} =\]
\[= \frac{4y - 1}{y}\]
\[3)\frac{y^{2} - 4}{3y + 6} = \frac{(y - 2)(y + 2)}{3(y + 2)} =\]
\[= \frac{y - 2}{3}\]
\[4)\frac{16 - x^{2}}{x^{2} + 8x + 16} =\]
\[= \frac{(4 - x)(4 + x)}{(x + 4)^{2}} = \frac{4 - x}{4 + x}\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{x - 3^{\backslash x}}{3x^{2}} - \frac{7 - x^{\backslash 3}}{x^{3}} =\]
\[= \frac{x^{2} - 3x - 21 + 3x}{3x^{3}} = \frac{x^{2} - 21\ }{3x^{3}}\]
\[2)\frac{36}{a^{2} + 3a} - \frac{12}{a} =\]
\[= \frac{36}{a(a + 3)} - \frac{12^{\backslash a + 3}}{a} =\]
\[= \frac{36 - 12a - 36}{a(a + 3)} =\]
\[= - \frac{12a}{a(a + 3)} = - \frac{12}{a + 3}\]
\[3)\frac{a^{2}}{a^{2} - 25} - \frac{a^{\backslash a + 5}}{a - 5} =\]
\[= \frac{a^{2} - a^{2} - 5a}{(a - 5)(a + 5)} =\]
\[= - \frac{5a}{a^{2} - 25} = \frac{5a}{25 - a²}\]
\[4)\frac{20x^{2}}{4x - 7} - 5x^{\backslash 4x - 7} =\]
\[= \frac{20x^{2} - 20x^{2} + 35x}{4x - 7} = \frac{35x}{4x - 7}\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[1)\frac{a + 12}{4a + 16} - \frac{a + 4}{4a - 16} + \frac{19}{a^{2} - 16} =\]
\[= \frac{12}{4(a^{2} - 16)} = \frac{3}{a^{2} - 16}\]
\[2)\frac{8a^{3} + 36a}{a^{3} + 27} - \frac{4a^{2}}{a^{2} - 3a + 9} =\]
\[= \frac{8a^{3} + 36a - 4a^{3} - 12a^{2}}{(a + 3)\left( a^{2} - 3a + 9 \right)} =\]
\[= \frac{4a^{3} - 12a^{2} + 36a}{(a + 3)\left( a^{2} - 3a + 9 \right)} =\]
\[= \frac{4a(a^{2} - 3a + 9)}{(a + 3)\left( a^{2} - 3a + 9 \right)} = \frac{4a}{a + 3}\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[\frac{x + 2y}{y} = 5\]
\[\frac{x}{y} + \frac{2y}{y} = 5\]
\[\frac{x}{y} + 2 = 5\]
\[\frac{x}{y} = 5 - 2 = 3.\]
\[1)\ \frac{y}{x} = \frac{1}{3}\]
\[2)\frac{3x + y}{y} = \frac{3x}{y} + \frac{y}{y} =\]
\[= 3 \cdot \frac{x}{y} + 1 = 3 \cdot 3 + 1 = 10.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[y = \frac{x^{2} - 25}{x - 5} - \frac{2x^{2} + 6x}{x} =\]
\[= \frac{(x - 5)(x + 5)}{x - 5} - \frac{x(2x + 6)}{x} =\]
\[= x + 5 - (2x + 6) =\]
\[= x + 5 - 2x - 6 = - x - 1\]
\[y = - x - 1;\ \ \ x \neq 0;\ \ x \neq 5.\]