\[\boxed{\text{994\ (994).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ A\ ( - 4;0);\ \ B\ (0;2):\]
\[y = kx + b\]
\[0 = - 4k + b\]
\[4k = b\]
\[2 = 0 + b \Longrightarrow \ \ b = 2\]
\[Тогда:\ \ \]
\[4k = 2 \Longrightarrow \ \ k = 0,5\]
\[2)\ C\ (0;\ - 3);\ \ D\ (5;0):\]
\[y = kx + b\]
\[- 3 = 0 + b \Longrightarrow \ \ b = - 3\]
\[0 = 5k - 3\ \ \]
\[5k = 3 \Longrightarrow \ \ k = \frac{3}{5} = 0,6\]
\[\boxed{\text{994.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[g(x) = \frac{20}{x} - 3\ \ \ и\ \ \ \ \ \]
\[h(x) = 8 - 3x\]
\[1)\ g(1) = \frac{20}{1} - 3 = 17;\ \ \ \ \ \]
\[\text{\ h}(1) = 8 - 3 \cdot 1 = 5\]
\[g(1) > h(1).\]
\[2)\ g(5) = \frac{20}{5} - 3 = 4 - 3 = 1;\ \ \]
\[\text{\ h}(2) = 8 - 3 \cdot 2 = 8 - 6 = 2\]
\[g(5) < h(2).\]
\[3)\ g( - 2) = \frac{20}{- 2} - 3 =\]
\[= - 10 - 3 = - 13;\ \ \ \]
\[h(6) = 8 - 3 \cdot 6 = 8 - 18 =\]
\[= - 10\]
\[g( - 2) < h(6).\]