\[\boxed{\text{870\ (870).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = 2,5x + 10\]
\[2,5x + 10 = 0\]
\[2,5x = - 10\]
\[x = - 4,\ \ ( - 4;0)\]
\[Ответ:( - 4;0);\ \ (0;10).\]
\[2)\ y = 6x - 4\]
\[y = 6 \cdot 0 - 4 = - 4,\ \ (0;\ - 4)\]
\[6x - 4 = 0\]
\[6x = 4\]
\[x = \frac{2}{3},\ \ \left( \frac{2}{3};0 \right)\]
\[Ответ:(0;\ - 4),\ \left( \frac{2}{3};0 \right)\text{.\ }\]
\[\boxed{\text{870.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[(a + b + c)^{3} - a^{3} - b^{3} - c^{3} =\]
\[= \left( (a + b + c)^{3} - a^{3} \right) - \left( b^{3} + c^{3} \right) =\]
\[- (b + c)\left( b^{2} - cb + c^{2} \right) =\]
\[= 3 \cdot (b + c)(a + b)(a + c)\]
\[3 \cdot (b + c)(a + b)(a + c) =\]
\[= 3 \cdot (b + c)(a + b)(a + c) \Longrightarrow\]
\[\Longrightarrow тождество\ верно.\]
\[(a - b)^{3} + (b - c)^{3} - (a - c)^{3} =\]
\[= 3(a - c)(b - a)(b - c) =\]
\[= - 3(a - c)(a - b)(b - c)\]
\[- 3(a - c)(a - b)(b - c) =\]
\[= - 3(a - c)(a - b)(b - c) \Longrightarrow\]
\[\Longrightarrow тождество\ верно.\]