\[\boxed{\text{854\ (854).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ y = x - 5\]
\[x\] | \[2\] | \[3\] |
---|---|---|
\[y\] | \[- 3\] | \[- 2\] |
\[2)\ y = 3x + 1\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[1\] | \[4\] |
\[3)\ y = - \frac{1}{6}x - 2\]
\[x\] | \[0\] | \[6\] |
---|---|---|
\[y\] | \[- 2\] | \[- 3\] |
\[4)\ y = 0,4x + 3\]
\[x\] | \[0\] | \[5\] |
---|---|---|
\[y\] | \[3\] | \[5\] |
\[\boxed{\text{854.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ a^{7} + ab^{6} = a\left( a^{6} + b^{6} \right) =\]
\[= a(a^{2} + b^{2})(a^{4} - a^{2}b^{2} + b^{4})\]
\[2)\ x^{8} - y^{8} =\]
\[= \left( x^{4} - y^{4} \right)\left( x^{4} + y^{4} \right) =\]
\[= \left( x^{2} - y^{2} \right)\left( x^{2} + y^{2} \right)\left( x^{4} + y^{4} \right) =\]
\[= (x - y)(x + y)\left( x^{2} + y^{2} \right)\left( x^{4} + y^{4} \right)\]
\[3)\ c^{6} - 1 = \left( c^{3} - 1 \right)\left( c^{3} + 1 \right) =\]