\[\boxed{\text{777\ (777).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ T = 2t + 6\]
\[2)\ \]
\[Время,\ мин\] | \[0\] | \[1\] | \[2\] | \[3\] | \[4\] | \[5\] | \[6\] | \[7\] | \[8\] | \[9\] | \[10\] |
---|---|---|---|---|---|---|---|---|---|---|---|
\[Температура,\] \[{^\circ}С\] |
\[6\] | \[8\] | \[10\] | \[12\] | \[14\] | \[16\] | \[18\] | \[20\] | \[22\] | \[24\] | \[26\] |
\[\boxed{\text{777.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1) - x^{2} - 16x + 36 =\]
\[= - \left( x^{2} + 16x + 64 - 100 \right) =\]
\[= - (x + 8)^{2} + 100\]
\[принимает\ наибольшее\ \]
\[значение\ при\ x = - 8 \Longrightarrow\]
\[\Longrightarrow 0 + 100 = 100\]
\[2)\ 2 - 16x^{2} + 24x =\]
\[= - \left( 16x^{2} - 24x + 9 - 11 \right) =\]
\[= - (4x - 3)^{2} + 11\]
\[принимает\ наибольшее\ \]
\[значение\ при\ 4x - 3 = 0;\ \ \]
\[x = \frac{3}{4} \Longrightarrow 0 + 11 = 11\]